Projective stationary sets and a strong reflection principle

被引:26
作者
Feng, Q [1 ]
Jech, T
机构
[1] Acad Sinica, Math Inst, Beijing 100080, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1998年 / 58卷
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024610798006462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies projective stationary sets. The Projective Stationary Reflection Principle is the statement that every projective stationary set contains an increasing continuous epsilon-chain of length omega(1). It is shown that, if Martin's Maximum holds, then the Projective Stationary Reflection Principle holds. Also, this principle is equivalent to the Strong Reflection Principle. The paper shows that the saturation of the nonstationary ideal on omega(1) is equivalent to a certain kind of reflection.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 10 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
FENG Q, 1989, P LOND MATH SOC, V58, P237
[3]   MARTINS MAXIMUM, SATURATED IDEALS, AND NON-REGULAR ULTRAFILTERS .1. [J].
FOREMAN, M ;
MAGIDOR, M ;
SHELAH, S .
ANNALS OF MATHEMATICS, 1988, 127 (01) :1-47
[4]  
JECH T, 1978, SET THEORY
[5]  
Jech T., 1986, MULTIPLE FORCING CAM
[6]  
SILVER J, 1974, P INT C MATH, V1, P265
[7]   2 CONSEQUENCES OF DETERMINACY CONSISTENT WITH CHOICE [J].
STEEL, JR ;
VANWESEP, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 272 (01) :67-85
[8]  
TODORCEVIC S, 1987, UNPUB STRONG REFLECT
[9]  
TODORCEVIC S, 1985, UNPUB REFLECTING STA
[10]   FORCING AXIOMS AND STATIONARY SETS [J].
VELICKOVIC, B .
ADVANCES IN MATHEMATICS, 1992, 94 (02) :256-284