Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe

被引:94
作者
Abdel-Hafiez, M. [1 ]
Ge, J. [2 ]
Vasiliev, A. N. [3 ,4 ]
Chareev, D. A. [5 ]
Van de Vondel, J. [2 ]
Moshchalkov, V. V. [2 ]
Silhanek, A. V. [1 ]
机构
[1] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium
[2] Katholieke Univ Leuven, Nanoscale Superconduct & Magnetism Grp, INPAC, B-3001 Louvain, Belgium
[3] Moscow MV Lomonosov State Univ, Low Temp Phys & Superconduct Dept, Moscow 119991, Russia
[4] Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia
[5] Russian Acad Sci, Inst Expt Mineral, Chernogolovka 142432, Moscow Dist, Russia
关键词
PENETRATION DEPTH; PHASE-DIAGRAM; FLUX JUMPS; ANISOTROPY;
D O I
10.1103/PhysRevB.88.174512
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the temperature dependence of the lower critical field Hc1(T) of a high-quality FeSe single crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods and the corresponding Hc1(T) was deduced by taking into account demagnetization factors. A pronounced change in the Hc1(T) curvature is observed, which is attributed to anisotopic s-wave or multiband superconductivity. The London penetration depth.ab (T) calculated from the lower critical field does not follow an exponential behavior at low temperatures, as it would be expected for a fully gapped clean s-wave superconductor. Using either a two-band model with s-wave-like gaps of magnitudes Delta(1) = 0.41 +/- 0.1 meV and Delta(2) = 3.33 +/- 0.25 meV or a single anisotropic s-wave order parameter, the temperature dependence of the lower critical field Hc1(T) can be well described. These observations clearly show that the superconducting energy gap in FeSe is nodeless.
引用
收藏
页数:7
相关论文
共 59 条
  • [1] Specific heat and upper critical fields in KFe2As2 single crystals
    Abdel-Hafiez, M.
    Aswartham, S.
    Wurmehl, S.
    Grinenko, V.
    Hess, C.
    Drechsler, S. -L.
    Johnston, S.
    Wolter, A. U. B.
    Buechner, B.
    Rosner, H.
    Boeri, L.
    [J]. PHYSICAL REVIEW B, 2012, 85 (13)
  • [2] Temperature and field dependence of the anisotropy of MgB2 -: art. no. 167004
    Angst, M
    Puzniak, R
    Wisniewski, A
    Jun, J
    Kazakov, SM
    Karpinski, J
    Roos, J
    Keller, H
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (16) : 1670041 - 1670044
  • [3] The magnetization of PrFeAsO0.60F0.12 superconductor
    Bhoi, D.
    Mandal, P.
    Choudhury, P.
    Dash, S.
    Banerjee, A.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (7-8): : 258 - 264
  • [4] Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe
    Boehmer, A. E.
    Hardy, F.
    Eilers, F.
    Ernst, D.
    Adelmann, P.
    Schweiss, P.
    Wolf, T.
    Meingast, C.
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [5] Irreversible magnetization of pin-free type-II superconductors
    Brandt, EH
    [J]. PHYSICAL REVIEW B, 1999, 60 (17): : 11939 - 11942
  • [6] Multiband model for tunneling in MgB2 junctions -: art. no. 180517
    Brinkman, A
    Golubov, AA
    Rogalla, H
    Dolgov, OV
    Kortus, J
    Kong, Y
    Jepsen, O
    Andersen, OK
    [J]. PHYSICAL REVIEW B, 2002, 65 (18) : 1805171 - 1805174
  • [7] Length scales, collective modes, and type-1.5 regimes in three-band superconductors
    Carlstrom, Johan
    Garaud, Julien
    Babaev, Egor
    [J]. PHYSICAL REVIEW B, 2011, 84 (13)
  • [8] Magnetic penetration depth of MgB2
    Carrington, A
    Manzano, F
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 385 (1-2): : 205 - 214
  • [9] Single crystal growth and characterization of tetragonal FeSe1-x superconductors
    Chareev, Dmitriy
    Osadchii, Evgeniy
    Kuzmicheva, Tatiana
    Lin, Jiunn-Yuan
    Kuzmichev, Svetoslav
    Volkova, Olga
    Vasiliev, Alexander
    [J]. CRYSTENGCOMM, 2013, 15 (10): : 1989 - 1993
  • [10] Multigap nodeless superconductivity in FeSex: Evidence from quasiparticle heat transport
    Dong, J. K.
    Guan, T. Y.
    Zhou, S. Y.
    Qiu, X.
    Ding, L.
    Zhang, C.
    Patel, U.
    Xiao, Z. L.
    Li, S. Y.
    [J]. PHYSICAL REVIEW B, 2009, 80 (02)