Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

被引:14
作者
Eltschka, Matthias [1 ]
Jaeck, Berthold [1 ]
Assig, Maximilian [1 ]
Kondrashov, Oleg V. [2 ]
Skvortsov, Mikhail A. [2 ,3 ,4 ]
Etzkorn, Markus [1 ]
Ast, Christian R. [1 ]
Kern, Klaus [1 ,5 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] Moscow Inst Phys & Technol, Moscow 141700, Russia
[3] Skolkovo Inst Sci & Technol, Moscow 143026, Russia
[4] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[5] Ecole Polytech Fed Lausanne, Inst Phys Mat Condensee, CH-1015 Lausanne, Switzerland
关键词
ENERGY GAP MEASUREMENTS; FILMS; VANADIUM; TEMPERATURE; DEPENDENCE; NANOSCALE; SN;
D O I
10.1063/1.4931359
中图分类号
O59 [应用物理学];
学科分类号
摘要
The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 37 条
[1]   A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields [J].
Assig, Maximilian ;
Etzkorn, Markus ;
Enders, Axel ;
Stiepany, Wolfgang ;
Ast, Christian R. ;
Kern, Klaus .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[2]   Vortex structures in mesoscopic superconducting spheres [J].
Baelus, B. J. ;
Sun, D. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2007, 75 (17)
[3]   Electron spin resonance-scanning tunneling microscopy [J].
Balatsky, Alexander V. ;
Nishijima, Mitsuaki ;
Manassen, Yishay .
ADVANCES IN PHYSICS, 2012, 61 (02) :117-152
[4]   Critical fields of mesoscopic superconductors [J].
Benoist, R ;
Zwerger, W .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (3-4) :377-381
[5]  
Bose S, 2010, NAT MATER, V9, P550, DOI [10.1038/nmat2768, 10.1038/NMAT2768]
[6]   PHONON SPECTRUM OF SUPERCONDUCTING AMORPHOUS BISMUTH AND GALLIUM BY ELECTRON TUNNELING [J].
CHEN, TT ;
CHEN, JT ;
LESLIE, JD ;
SMITH, HJT .
PHYSICAL REVIEW LETTERS, 1969, 22 (11) :526-&
[7]   Vortices in a mesoscopic cone: A superconducting tip in the presence of an applied field [J].
Chen, Yajiang ;
Doria, Mauro M. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2008, 77 (05)
[8]   Magnetization of mesoscopic superconducting disks [J].
Deo, PS ;
Schweigert, VA ;
Peeters, FM ;
Geim, AK .
PHYSICAL REVIEW LETTERS, 1997, 79 (23) :4653-4656
[9]   ENERGY GAP MEASUREMENTS BY TUNNELING BETWEEN SUPERCONDUCTING FILMS .I. TEMPERATURE DEPENDENCE [J].
DOUGLASS, DH ;
MESERVEY, R .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 135 (1A) :A19-&
[10]   DIRECT MEASUREMENT OF QUASIPARTICLE-LIFETIME BROADENING IN A STRONG-COUPLED SUPERCONDUCTOR [J].
DYNES, RC ;
NARAYANAMURTI, V ;
GARNO, JP .
PHYSICAL REVIEW LETTERS, 1978, 41 (21) :1509-1512