The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations

被引:10
作者
Huang, LC
Wu, YD
机构
[1] Inst. Compl. Math. Sci./Eng. Comp., Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
incompressible Navier-Stokes equations; pressure correction projection; deviation; differential-algebraic equations; component-consistency;
D O I
10.1016/0898-1221(96)00057-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of O(Delta t(2)) for the Velocity and O(Delta t) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
[41]   Family of convergent numerical schemes for the incompressible Navier-Stokes equations [J].
Eymard, Robert ;
Feron, Pierre ;
Guichard, Cindy .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 :196-218
[42]   ON THE INSTABILITY OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH UNBOUNDED SHEAR LAYER [J].
Wang, Chao ;
Wang, Yuxi ;
Wu, Wenzhi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
[43]   A velocity-decomposition formulation for the incompressible Navier-Stokes equations [J].
Edmund, Deborah O. ;
Maki, Kevin J. ;
Beck, Robert F. .
COMPUTATIONAL MECHANICS, 2013, 52 (03) :669-680
[44]   On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations [J].
Xu, XJ ;
Chow, CO ;
Lui, SH .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1251-1269
[45]   An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations [J].
Kim, K ;
Baek, SJ ;
Sung, HJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 38 (02) :125-138
[46]   Numerical stability and error analysis for the incompressible Navier-Stokes equations [J].
Prudhomme, S ;
Oden, JT .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (11) :779-787
[47]   Large-time behavior in incompressible Navier-Stokes equations [J].
Carpio, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :449-475
[48]   On preconditioned iterative methods for unsteady incompressible Navier-Stokes equations [J].
Ran, Yu-Hong ;
Wang, Jun-Gang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 :477-485
[49]   Global large solutions to incompressible Navier-Stokes equations with gravity [J].
Peng, Weimin ;
Zhou, Yi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (04) :590-597
[50]   On the influence of different stabilisation methods for the incompressible Navier-Stokes equations [J].
Naegele, Sandra ;
Wittum, Gabriel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) :100-116