Wigner rotations and Iwasawa decompositions in polarization optics

被引:25
作者
Han, D
Kim, YS
Noz, ME
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] NYU, Dept Radiol, New York, NY 10016 USA
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 01期
关键词
D O I
10.1103/PhysRevE.60.1036
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz,group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories. [S1063-651X(99)08907-2].
引用
收藏
页码:1036 / 1041
页数:6
相关论文
共 20 条
[11]   THOMAS PRECESSION AND SQUEEZED STATES OF LIGHT [J].
HAN, D ;
HARDEKOPF, EE ;
KIM, YS .
PHYSICAL REVIEW A, 1989, 39 (03) :1269-1276
[12]   E(2)-LIKE LITTLE GROUP FOR MASSLESS PARTICLES AND NEUTRINO POLARIZATION AS A CONSEQUENCE OF GAUGE-INVARIANCE [J].
HAN, D ;
KIM, YS ;
SON, D .
PHYSICAL REVIEW D, 1982, 26 (12) :3717-3725
[13]   ON SOME TYPES OF TOPOLOGICAL GROUPS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1949, 50 (03) :507-558
[14]  
Kim Y.S., 1991, Phase Space Picture of Quantum Mechanics
[15]   E(2)-SYMMETRICAL 2-MODE SHEARED STATES [J].
KIM, YS ;
YEH, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) :1237-1246
[16]   CANONICAL TRANSFORMATION IN QUANTUM-MECHANICS [J].
KIM, YS ;
WIGNER, EP .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (05) :439-448
[17]   OBSERVATION OF LORENTZ-GROUP BERRY PHASES IN POLARIZATION OPTICS [J].
KITANO, M ;
YABUZAKI, T .
PHYSICS LETTERS A, 1989, 142 (6-7) :321-325
[18]  
Noz M.E., 1986, THEORY APPL POINCARE
[19]   Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams [J].
Simon, R ;
Mukunda, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (08) :2146-2155
[20]  
Wigner E, 1939, ANN MATH, V40, P149, DOI 10.1016/0920-5632(89)90402-7