Switching of Electron and Ion Conductions by Reversible H2O Sorption in n-Type Organic Semiconductors

被引:10
作者
Abe, Haruka [1 ]
Kawasaki, Ayumi [1 ]
Takeda, Takashi [1 ,2 ]
Hoshino, Norihisa [1 ,2 ]
Matsuda, Wakana [3 ]
Seki, Shu [3 ]
Akutagawa, Tomoyuki [1 ,2 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 9808579, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat IMRAM, Sendai, Miyagi 9808579, Japan
[3] Kyoto Univ, Grad Sch Engn, Kyoto 6158510, Japan
关键词
organic semiconductor; electron transport; naphthalenediimide; ionic conductor; H2O adsorption; organic salt; dielectric response; CHARGE-CARRIER MOBILITY; DERIVATIVES; TRANSISTOR; FRAMEWORKS; ENERGY; CELLS;
D O I
10.1021/acsami.0c09501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polar H2O molecules generally act as trapping sites and suppress the electron mobility of n-type organic semiconductors, making chemical design of H2O-tolerant and responsive n-type semiconductors an important step toward multifunctional electron-ion coupling devices. The introduction of effective electrostatic interactions between potassium ions (K+) and carboxylate (-COO-) anions into the electron-transporting naphthalenediimide pi-framework enables the design of high-performance H2O-tolerant n-type semiconductors with a reversible H2O adsorption-desorption ability, where the electron mobility and K+ ionic conductivity were coupled with the reversible H2O sorption behavior. The reversible H2O adsorption into the crystals enhanced the electron mobility from 0.04 to 0.28 cm(2) V-1 s(-1), whereas the K+ ionic conductivity decreased from 3.4 x 10(-5) to 4.7 x 10(-7) S cm(-1). Because this reversible electron-ion conducting switch is responsive to H2O sorption behavior, it is a strong candidate for H2O gating carrier transport systems.
引用
收藏
页码:37391 / 37399
页数:9
相关论文
共 54 条
[1]   ELECTRICAL CONDUCTIVITY OF THE PERYLENE-BROMINE COMPLEX [J].
AKAMATU, H ;
INOKUCHI, H ;
MATSUNAGA, Y .
NATURE, 1954, 173 (4395) :168-169
[2]   Dynamic molecular assemblies toward a new frontier in materials chemistry [J].
Akutagawa, T. .
MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (06) :1064-1073
[3]   Organic Ternary Solar Cells: A Review [J].
Ameri, Tayebeh ;
Khoram, Parisa ;
Min, Jie ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2013, 25 (31) :4245-4266
[4]  
[Anonymous], 2004, DIELECTRIC PHENOMENA, DOI [10.1016/B978-012396561-5/50012-8, DOI 10.1016/B978-012396561-5/50012-8]
[5]   n-Type Organic Semiconductors in Organic Electronics [J].
Anthony, John E. ;
Facchetti, Antonio ;
Heeney, Martin ;
Marder, Seth R. ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2010, 22 (34) :3876-3892
[6]   Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics [J].
Bendikov, M ;
Wudl, F ;
Perepichka, DF .
CHEMICAL REVIEWS, 2004, 104 (11) :4891-4945
[7]   Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption [J].
Biswal, Bishnu P. ;
Kandambeth, Sharath ;
Chandra, Suman ;
Shinde, Digambar Balaji ;
Bera, Saibal ;
Karak, Suvendu ;
Garai, Bikash ;
Kharul, Ulhas K. ;
Banerjee, Rahul .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (47) :23664-23669
[8]   π-Extended TTF: a versatile molecule for organic electronics [J].
Brunetti, Fulvio G. ;
Luis Lopez, Juan ;
Atienza, Carmen ;
Martin, Nazario .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (10) :4188-4205
[9]   The Larger Linear N-Heteroacenes [J].
Bunz, Uwe H. F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (06) :1676-1686
[10]   Water adsorption in MOFs: fundamentals and applications [J].
Canivet, Jerome ;
Fateeva, Alexandra ;
Guo, Youmin ;
Coasne, Benoit ;
Farrusseng, David .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5594-5617