Linear mixed models for association analysis of quantitative traits with next-generation sequencing data

被引:4
作者
Chiu, Chi-yang [1 ,2 ]
Yuan, Fang [3 ]
Zhang, Bingsong [4 ]
Yuan, Ao [4 ]
Li, Xin [4 ]
Fang, Hong-Bin [4 ]
Lange, Kenneth [5 ]
Weeks, Daniel E. [6 ,7 ]
Wilson, Alexander F. [2 ]
Bailey-Wilson, Joan E. [2 ]
Musolf, Anthony M. [2 ]
Stambolian, Dwight [8 ]
Lakhal-Chaieb, M'Hamed Lajmi [9 ]
Cook, Richard J. [10 ]
McMahon, Francis J. [11 ,12 ]
Amos, Christopher I. [13 ]
Xiong, Momiao [14 ]
Fan, Ruzong [2 ,4 ]
机构
[1] Univ Tennessee, Hlth Sci Ctr, Div Biostat, Dept Prevent Med, Memphis, TN USA
[2] NHGRI, Computat & Stat Genom Branch, NIH, Bethesda, MD 20892 USA
[3] Kunming Med Univ, Sch Basic Med, Dept Biochem & Mol Biol, Kunming, Yunnan, Peoples R China
[4] Georgetown Univ, Med Ctr, Dept Biostat Bioinformat & Biomath, 4000 Reservoir Rd NW,Bldg D-180, Washington, DC 20057 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[6] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Biostat, Pittsburgh, PA 15261 USA
[7] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Human Genet, Pittsburgh, PA 15261 USA
[8] Univ Penn, Dept Genet, Philadelphia, PA 19104 USA
[9] Univ Laval, Dept Math & Stat, Quebec City, PQ, Canada
[10] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
[11] NIMH, Human Genet Branch, NIH, Bethesda, MD 20892 USA
[12] NIMH, Genet Basis Mood & Anxiety Disorders Sect, NIH, Bethesda, MD 20892 USA
[13] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[14] Univ Texas Houston, Human Genet Ctr, Houston, TX USA
基金
美国国家卫生研究院;
关键词
common variants; complex diseases; functional data analysis; functional linear mixed models; linear mixed models; rare variants; COMMON DISEASES; RARE VARIANTS; LINKAGE; MYOPIA;
D O I
10.1002/gepi.22177
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We develop linear mixed models (LMMs) and functional linear mixed models (FLMMs) for gene-based tests of association between a quantitative trait and genetic variants on pedigrees. The effects of a major gene are modeled as a fixed effect, the contributions of polygenes are modeled as a random effect, and the correlations of pedigree members are modeled via inbreeding/ kinship coefficients. F-statistics and. 2 likelihood ratio test (LRT) statistics based on the LMMs and FLMMs are constructed to test for association. We show empirically that the F-distributed statistics provide a good control of the type I error rate. The F-test statistics of the LMMs have similar or higher power than the FLMMs, kernel-based famSKAT (family-based sequence kernel association test), and burden test famBT (family-based burden test). The F-statistics of the FLMMs perform well when analyzing a combination of rare and common variants. For small samples, the LRT statistics of the FLMMs control the type I error rate well at the nominal levels alpha = 0.01 and 0.05. For moderate/ large samples, the LRT statistics of the FLMMs control the type I error rates well. The LRT statistics of the LMMs can lead to inflated type I error rates. The proposed models are useful in whole genome and whole exome association studies of complex traits.
引用
收藏
页码:189 / 206
页数:18
相关论文
共 50 条
  • [1] An integrated map of genetic variation from 1,092 human genomes
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Schmidt, Jeanette P.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Dinh, Huyen
    Kovar, Christie
    Lee, Sandra
    Lewis, Lora
    Muzny, Donna
    Reid, Jeff
    Wang, Min
    Wang, Jun
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Li, Zhuo
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Su, Zhe
    Tai, Shuaishuai
    Tang, Meifang
    [J]. NATURE, 2012, 491 (7422) : 56 - 65
  • [2] AMOS CI, 1994, AM J HUM GENET, V54, P535
  • [3] Primer: Sequencing - the next generation
    不详
    [J]. NATURE METHODS, 2008, 5 (01) : 15 - 15
  • [4] Population Structure and Cryptic Relatedness in Genetic Association Studies
    Astle, William
    Balding, David J.
    [J]. STATISTICAL SCIENCE, 2009, 24 (04) : 451 - 471
  • [5] Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis
    Aulchenko, Yurii S.
    de Koning, Dirk-Jan
    Haley, Chris
    [J]. GENETICS, 2007, 177 (01) : 577 - 585
  • [6] Sequence Kernel Association Test for Quantitative Traits in Family Samples
    Chen, Han
    Meigs, James B.
    Dupuis, Josee
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (02) : 196 - 204
  • [7] de Boor J. R., 1980, MATH COMPUT, V34, P325
  • [8] A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits
    Fan, Ruzong
    Chiu, Chi-yang
    Jung, Jeesun
    Weeks, Daniel E.
    Wilson, Alexander F.
    Bailey-Wilson, Joan E.
    Amos, Christopher I.
    Chen, Zhen
    Mills, James L.
    Xiong, Momiao
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (08) : 702 - 721
  • [9] Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
    Fan, Ruzong
    Wang, Yifan
    Yan, Qi
    Ding, Ying
    Weeks, Daniel E.
    Lu, Zhaohui
    Ren, Haobo
    Cook, Richard J.
    Xiong, Momiao
    Swaroop, Anand
    Chew, Emily Y.
    Chen, Wei
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (02) : 133 - 143
  • [10] Generalized Functional Linear Models for Gene-Based Case-Control Association Studies
    Fan, Ruzong
    Wang, Yifan
    Mills, James L.
    Carter, Tonia C.
    Lobach, Iryna
    Wilson, Alexander F.
    Bailey-Wilson, Joan E.
    Weeks, Daniel E.
    Xiong, Momiao
    [J]. GENETIC EPIDEMIOLOGY, 2014, 38 (07) : 622 - 637