A new multi-class classification method based on minimum enclosing balls
被引:1
作者:
Song, QingJun
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
Shandong Univ Sci & Technol, Sch Tai An, Tai An 271019, Shandong, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
Song, QingJun
[1
,2
]
Xiao, XingMing
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
Xiao, XingMing
[1
]
Jiang, HaiYan
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Sch Tai An, Tai An 271019, Shandong, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
Jiang, HaiYan
[2
]
Zhao, XieGuang
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Sch Tai An, Tai An 271019, Shandong, Peoples R ChinaChina Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
Zhao, XieGuang
[2
]
机构:
[1] China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] Shandong Univ Sci & Technol, Sch Tai An, Tai An 271019, Shandong, Peoples R China
With respect to classification problems, the Minimum enclosing ball (MEB) method was recently studied by some scholars as a new support vector machine. As a nascent technology, however, MEB reports poor adaptability for different types of samples, especially multi-class samples. In this paper, we propose a new multi-class classification method based on MEB. This method is derived from each class sample center and radius with the Gaussian kernel width factor parameter sigma, which is labelled as sigma-MEB. sigma is a variable parameter according to the different sample characteristics. When this parameter is considered, the multi-class classifier is easy to adapt and is robust in diverse datasets. The quadratic programming problem was transformed into its dual form with Lagrange multipliers using this method. Finally, we applied sequential minimal optimization method and Karush-Kuhn-Tucker conditions to accelerate the training process. Numerical experiment results indicate that for given different types of samples, the proposed method is more accurate than the methods with which it is compared. Moreover, the proposed method reports values in the upper quantile with respect to adaptation performance.
机构:
Univ Politecn Cataluna, Dept Llenguatges & Sistemes Informat, ES-08034 Barcelona, SpainTokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
Balcazar, Jose L.
;
Dai, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Bioengn, Chicago, IL 60607 USATokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
Dai, Yang
;
Tanaka, Junichi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, JapanTokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
机构:
European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Natl Inst Informat, Tokyo, JapanEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Collier, Nigel
;
Mai-vu Tran
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Informat, Tokyo, Japan
Univ Engn & Technol VNU, Knowledge Technol Lab, Hanoi, VietnamEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Mai-vu Tran
;
Hoang-quynh Le
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Informat, Tokyo, Japan
Univ Engn & Technol VNU, Knowledge Technol Lab, Hanoi, VietnamEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
机构:
Univ Politecn Cataluna, Dept Llenguatges & Sistemes Informat, ES-08034 Barcelona, SpainTokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
Balcazar, Jose L.
;
Dai, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Bioengn, Chicago, IL 60607 USATokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
Dai, Yang
;
Tanaka, Junichi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, JapanTokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
机构:
European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Natl Inst Informat, Tokyo, JapanEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Collier, Nigel
;
Mai-vu Tran
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Informat, Tokyo, Japan
Univ Engn & Technol VNU, Knowledge Technol Lab, Hanoi, VietnamEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England
Mai-vu Tran
;
Hoang-quynh Le
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Informat, Tokyo, Japan
Univ Engn & Technol VNU, Knowledge Technol Lab, Hanoi, VietnamEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge, England