Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency

被引:460
作者
Kweon, Do Hyung [1 ]
Okyay, Mahmut Sait [2 ]
Kim, Seok-Jin [1 ]
Jeon, Jong-Pil [1 ]
Noh, Hyuk-Jun [1 ]
Park, Noejung [2 ]
Mahmood, Javeed [1 ]
Baek, Jong-Beom [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Ctr Dimens Controllable Organ Frameworks, Sch Energy & Chem Engn, 50 UNIST, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Nat Sci, 50 UNIST, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; ACTIVE EDGE SITES; ELECTROLYTIC HYDROGEN; EVOLUTION REACTION; CATALYSTS; PERFORMANCE; OXIDATION; KINETICS; OXYGEN; PH;
D O I
10.1038/s41467-020-15069-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developing efficient and stable electrocatalysts is crucial for the electrochemical production of pure and clean hydrogen. For practical applications, an economical and facile method of producing catalysts for the hydrogen evolution reaction (HER) is essential. Here, we report ruthenium (Ru) nanoparticles uniformly deposited on multi-walled carbon nanotubes (MWCNTs) as an efficient HER catalyst. The catalyst exhibits the small overpotentials of 13 and 17 mV at a current density of 10 mA cm(-2) in 0.5M aq. H2SO4 and 1.0M aq. KOH, respectively, surpassing the commercial Pt/C (16 mV and 33 mV). Moreover, the catalyst has excellent stability in both media, showing almost "zeroloss" during cycling. In a real device, the catalyst produces 15.4% more hydrogen per power consumed, and shows a higher Faradaic efficiency (92.28%) than the benchmark Pt/C (85.97%). Density functional theory calculations suggest that Ru-C bonding is the most plausible active site for the HER.
引用
收藏
页数:10
相关论文
共 58 条
[31]  
PARSONS R, 1951, T FARADAY SOC, V47, P914, DOI 10.1039/tf9514700914
[32]   THE RATE OF ELECTROLYTIC HYDROGEN EVOLUTION AND THE HEAT OF ADSORPTION OF HYDROGEN [J].
PARSONS, R .
TRANSACTIONS OF THE FARADAY SOCIETY, 1958, 54 (07) :1053-1063
[33]   THE KINETICS OF ELECTRODE REACTIONS AND THE ELECTRODE MATERIAL [J].
PARSONS, R .
SURFACE SCIENCE, 1964, 2 :418-435
[34]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[35]   RuP2-Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values [J].
Pu, Zonghua ;
Amiinu, Ibrahim Saana ;
Kou, Zongkui ;
Li, Wenqiang ;
Mu, Shichun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (38) :11559-11564
[36]   In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction [J].
Ren, Xiang ;
Ji, Xuqiang ;
Wei, Yicheng ;
Wu, Dan ;
Zhang, Yong ;
Ma, Min ;
Liu, Zhiang ;
Asiri, Abdullah M. ;
Wei, Qin ;
Sun, Xuping .
CHEMICAL COMMUNICATIONS, 2018, 54 (12) :1425-1428
[37]   Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH [J].
Ren, Xiang ;
Wu, Dan ;
Ge, Ruixiang ;
Sun, Xu ;
Ma, Hongmin ;
Yan, Tao ;
Zhang, Yong ;
Du, Bin ;
Wei, Qin ;
Chen, Liang .
NANO RESEARCH, 2018, 11 (04) :2024-2033
[38]   Oxidation of multiwalled carbon nanotubes by nitric acid [J].
Rosca, ID ;
Watari, F ;
Uo, M ;
Akaska, T .
CARBON, 2005, 43 (15) :3124-3131
[39]   HYDROGEN OVERVOLTAGE AND ELECTRODE MATERIAL - A THEORETICAL ANALYSIS [J].
RUETSCHI, P ;
DELAHAY, P .
JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (01) :195-199
[40]  
Santos E, 2011, WILEY SER ELECTROCAT, P1, DOI 10.1002/9780470929421