Complex Hessian Operator and Generalized Lelong Numbers Associated to a Closed m-Positive Current

被引:0
作者
Wan, Dongrui [1 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Room 415,Sci & Technol Bldg, Shenzhen 518060, Peoples R China
关键词
Complex Hessian operator; m-subharmonic function; Lelong number; m-positive current; Capacity; MONGE-AMPERE MEASURES; DIRICHLET PROBLEM; EQUATIONS; CAPACITY;
D O I
10.1007/s11785-017-0711-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the generalized Lelong number of an m-positive current T with respect to an m-subharmonic weight . We also prove two Demailly's comparison theorems of the generalized Lelong numbers. Then by establishing an estimate for m-capacity , we show a new expression of the generalized Lelong number in terms of the -capacity of the sublevel set of .
引用
收藏
页码:475 / 489
页数:15
相关论文
共 38 条
[1]  
[Anonymous], 1993, Bull. Polish Acad. Sci. Math
[2]  
[Anonymous], 1991, LONDON MATH SOC MONO
[3]  
[Anonymous], ARXIV12033995V1
[4]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[5]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[6]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[8]   Solutions to degenerate complex Hessian equations [J].
Chinh, Lu Hoang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (06) :785-805
[9]   A variational theory of the Hessian equation [J].
Chou, KS ;
Wang, XJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1029-1064
[10]  
Demailly J.-P., Complex Analytic and Differential Geometry