Nonproteolytic Functions of Ubiquitin in Cell Signaling

被引:768
作者
Chen, Zhijian J. [1 ,2 ]
Sun, Lijun J. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
NF-KAPPA-B; FANCONI-ANEMIA PATHWAY; TOLL-LIKE-RECEPTOR; CONJUGATING ENZYME UBC13; DNA-DAMAGE RESPONSE; POLYUBIQUITIN CHAINS; HOMOLOGOUS RECOMBINATION; TRANSLESION SYNTHESIS; KINASE ACTIVATION; GENOTOXIC STRESS;
D O I
10.1016/j.molcel.2009.01.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The small protein ubiquitin is a central regulator of a cell's life and death. Ubiquitin is best known for targeting protein destruction by the 26S proteasome. In the past few years, however, nonproteolytic functions of ubiquitin have been uncovered at a rapid pace. These functions include membrane trafficking, protein kinase activation, DNA repair, and chromatin dynamics. A common mechanism underlying these functions is that ubiquitin, or polyubiquitin chains, serves as a signal to recruit proteins harboring ubiquitin-binding domains, thereby bringing together ubiquitinated proteins and ubiquitin receptors to execute specific biological functions. Recent advances in understanding ubiquitination in protein kinase activation and DNA repair are discussed to illustrate the nonproteolytic functions of ubiquitin in cell signaling.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 106 条
[1]   Coordinated regulation of toll-like receptor and NOD2 signaling by k63-linked polyubiquitin chains [J].
Abbott, Derek W. ;
Yang, Yibin ;
Hutti, Jessica E. ;
Madhavarapu, Swetha ;
Kelliher, Michelle A. ;
Cantley, Lewis C. .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (17) :6012-6025
[2]   The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO [J].
Abbott, DW ;
Wilkins, A ;
Asara, JM ;
Cantley, LC .
CURRENT BIOLOGY, 2004, 14 (24) :2217-2227
[3]   The ubiquitin ligase HectH9 regulates transcriptional activation by myc and is essential for tumor cell proliferation [J].
Adhikary, S ;
Marinoni, F ;
Hock, A ;
Hulleman, E ;
Popov, N ;
Beier, R ;
Bernard, S ;
Quarto, M ;
Capra, M ;
Goettig, S ;
Kogel, U ;
Scheffner, M ;
Helin, K ;
Eilers, M .
CELL, 2005, 123 (03) :409-421
[4]   Control of AMPK-related kinases by USP9X and atypical Lys29/Lys33-inked polyubiquitin chains [J].
Al-Hakim, Abdallah K. ;
Zagorska, Anna ;
Chapman, Louise ;
Deak, Maria ;
Peggie, Mark ;
Alessi, Dario R. .
BIOCHEMICAL JOURNAL, 2008, 411 (02) :249-260
[5]   Mechanistic Insight into Site-Restricted Monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI [J].
Alpi, Arno F. ;
Pace, Paul E. ;
Babu, M. Madan ;
Patel, Ketan J. .
MOLECULAR CELL, 2008, 32 (06) :767-777
[6]   ATR couples FANCD2 monoubiquitination to the DNA-damage response [J].
Andreassen, PR ;
D'Andrea, AD ;
Taniguchi, T .
GENES & DEVELOPMENT, 2004, 18 (16) :1958-1963
[7]   Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain [J].
Baud, V ;
Liu, ZG ;
Bennett, B ;
Suzuki, N ;
Xia, Y ;
Karin, M .
GENES & DEVELOPMENT, 1999, 13 (10) :1297-1308
[8]   DNA damage: ubiquitin marks the spot [J].
Bennett, Eric J. ;
Harper, J. Wade .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (01) :20-22
[9]   cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination [J].
Bertrand, Mathieu J. M. ;
Milutinovic, Snezana ;
Dickson, Kathleen M. ;
Ho, Wai Chi ;
Boudreault, Alain ;
Durkin, Jon ;
Gillard, John W. ;
Jaquith, James B. ;
Morris, Stephen J. ;
Barker, Philip A. .
MOLECULAR CELL, 2008, 30 (06) :689-700
[10]   Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis [J].
Bienko, M ;
Green, CM ;
Crosetto, N ;
Rudolf, F ;
Zapart, G ;
Coull, B ;
Kannouche, P ;
Wider, G ;
Peter, M ;
Lehmann, AR ;
Hofmann, K ;
Dikic, I .
SCIENCE, 2005, 310 (5755) :1821-1824