Cloning of Dirac fermions in graphene superlattices

被引:1068
作者
Ponomarenko, L. A. [1 ]
Gorbachev, R. V. [2 ]
Yu, G. L. [1 ]
Elias, D. C. [1 ]
Jalil, R. [2 ]
Patel, A. A. [3 ]
Mishchenko, A. [1 ]
Mayorov, A. S. [1 ]
Woods, C. R. [1 ]
Wallbank, J. R. [3 ]
Mucha-Kruczynski, M. [3 ]
Piot, B. A. [4 ]
Potemski, M. [4 ]
Grigorieva, I. V. [1 ]
Novoselov, K. S. [1 ]
Guinea, F. [5 ]
Fal'ko, V. I. [3 ]
Geim, A. K. [1 ,2 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[4] CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble, France
[5] Inst Ciencia Mat Madrid, Madrid 28049, Spain
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
SCANNING-TUNNELING-MICROSCOPY; HEXAGONAL BORON-NITRIDE; MAGNETOTRANSPORT;
D O I
10.1038/nature12187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties(1-8). In previous studies (see, for example, refs 1-8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice(1-4). Evidence for the formation of superlattice mini-bands (forming a fractal spectrum known as Hofstadter's butterfly(9)) has been limited to the observation of new low-field oscillations(5) and an internal structure within Landau levels(6-8). Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate's moire potential(10-12) acts as a superlattice and leads to profound changes in the graphene's electronic spectrum. Second-generation Dirac points(13-22) appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene's conduction and valence bands. Strong magnetic fields lead to Zak-type cloning(23) of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems(7-9,22-24) and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures(25).
引用
收藏
页码:594 / 597
页数:4
相关论文
共 30 条
  • [1] Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
    Albrecht, C
    Smet, JH
    von Klitzing, K
    Weiss, D
    Umansky, V
    Schweizer, H
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (01) : 147 - 150
  • [2] Fermiology of two-dimensional lateral superlattices
    Albrecht, C
    Smet, JH
    Weiss, D
    von Klitzing, K
    Hennig, R
    Langenbuch, M
    Suhrke, M
    Rössler, U
    Umansky, V
    Schweizer, H
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (11) : 2234 - 2237
  • [3] Extra Dirac points in the energy spectrum for superlattices on single-layer graphene
    Barbier, M.
    Vasilopoulos, P.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2010, 81 (07):
  • [4] Moire butterflies in twisted bilayer graphene
    Bistritzer, R.
    MacDonald, A. H.
    [J]. PHYSICAL REVIEW B, 2011, 84 (03):
  • [5] Transport and localization in periodic and disordered graphene superlattices
    Bliokh, Yury P.
    Freilikher, Valentin
    Savel'ev, Sergey
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2009, 79 (07)
  • [6] Transport in superlattices on single-layer graphene
    Burset, P.
    Yeyati, A. Levy
    Brey, L.
    Fertig, H. A.
    [J]. PHYSICAL REVIEW B, 2011, 83 (19)
  • [7] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [8] Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy
    Decker, Regis
    Wang, Yang
    Brar, Victor W.
    Regan, William
    Tsai, Hsin-Zon
    Wu, Qiong
    Gannett, William
    Zettl, Alex
    Crommie, Michael F.
    [J]. NANO LETTERS, 2011, 11 (06) : 2291 - 2295
  • [9] QUANTUM MAGNETOTRANSPORT IN LATERAL SURFACE SUPERLATTICES
    FERRY, DK
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 1992, 16 (04) : 251 - 317
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191