Cloning of Dirac fermions in graphene superlattices

被引:1069
|
作者
Ponomarenko, L. A. [1 ]
Gorbachev, R. V. [2 ]
Yu, G. L. [1 ]
Elias, D. C. [1 ]
Jalil, R. [2 ]
Patel, A. A. [3 ]
Mishchenko, A. [1 ]
Mayorov, A. S. [1 ]
Woods, C. R. [1 ]
Wallbank, J. R. [3 ]
Mucha-Kruczynski, M. [3 ]
Piot, B. A. [4 ]
Potemski, M. [4 ]
Grigorieva, I. V. [1 ]
Novoselov, K. S. [1 ]
Guinea, F. [5 ]
Fal'ko, V. I. [3 ]
Geim, A. K. [1 ,2 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[4] CNRS UJF UPS INSA, Lab Natl Champs Magnet Intenses, F-38042 Grenoble, France
[5] Inst Ciencia Mat Madrid, Madrid 28049, Spain
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
SCANNING-TUNNELING-MICROSCOPY; HEXAGONAL BORON-NITRIDE; MAGNETOTRANSPORT;
D O I
10.1038/nature12187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties(1-8). In previous studies (see, for example, refs 1-8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice(1-4). Evidence for the formation of superlattice mini-bands (forming a fractal spectrum known as Hofstadter's butterfly(9)) has been limited to the observation of new low-field oscillations(5) and an internal structure within Landau levels(6-8). Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate's moire potential(10-12) acts as a superlattice and leads to profound changes in the graphene's electronic spectrum. Second-generation Dirac points(13-22) appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene's conduction and valence bands. Strong magnetic fields lead to Zak-type cloning(23) of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems(7-9,22-24) and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures(25).
引用
收藏
页码:594 / 597
页数:4
相关论文
共 50 条
  • [1] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    Nature, 2013, 497 : 594 - 597
  • [2] Massless Dirac fermions in a laser field as a counterpart of graphene superlattices
    Savel'ev, Sergey E.
    Alexandrov, Alexandre S.
    PHYSICAL REVIEW B, 2011, 84 (03):
  • [3] Thermometry for Dirac fermions in graphene
    Liu, Fan-Hung
    Hsu, Chang-Shun
    Lo, Shun-Tsung
    Chuang, Chiashain
    Huang, Lung-, I
    Woo, Tak-Pong
    Liang, Chi-Te
    Fukuyama, Y.
    Yang, Y.
    Elmquist, R. E.
    Wang, Pengjie
    Lin, Xi
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (01) : 1 - 6
  • [4] Thermometry for Dirac fermions in graphene
    Fan-Hung Liu
    Chang-Shun Hsu
    Shun-Tsung Lo
    Chiashain Chuang
    Lung-I Huang
    Tak-Pong Woo
    Chi-Te Liang
    Y. Fukuyama
    Y. Yang
    R. E. Elmquist
    Pengjie Wang
    Xi Lin
    Journal of the Korean Physical Society, 2015, 66 : 1 - 6
  • [5] Composite Dirac fermions in graphene
    Khveshchenko, D. V.
    PHYSICAL REVIEW B, 2007, 75 (15):
  • [6] Analogies for Dirac fermions physics in graphene
    Dragoman, Daniela
    Dragoman, Mircea
    SOLID-STATE ELECTRONICS, 2024, 211
  • [7] Weak localization of Dirac fermions in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    PHYSICAL REVIEW LETTERS, 2008, 101 (12)
  • [8] Drude conductivity of Dirac fermions in graphene
    Horng, Jason
    Chen, Chi-Fan
    Geng, Baisong
    Girit, Caglar
    Zhang, Yuanbo
    Hao, Zhao
    Bechtel, Hans A.
    Martin, Michael
    Zettl, Alex
    Crommie, Michael F.
    Shen, Y. Ron
    Wang, Feng
    PHYSICAL REVIEW B, 2011, 83 (16)
  • [9] Superconductivity of disordered Dirac fermions in graphene
    Potirniche, Ionut-Dragos
    Maciejko, Joseph
    Nandkishore, Rahul
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [10] Confinement of Dirac fermions in gapped graphene
    Pakdel, Fatemeh
    Maleki, Mohammad Ali
    SCIENTIFIC REPORTS, 2024, 14 (01):