Network Anomaly Detection Using Random Forests and Entropy of Traffic Features

被引:13
作者
Yao, Dong [1 ]
Yin, Meijuan [1 ]
Luo, Junyong [1 ]
Zhang, Silong [1 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Zhengzhou 450002, Henan, Peoples R China
来源
2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012) | 2012年
关键词
anomaly detection; entropy; Random Forests;
D O I
10.1109/MINES.2012.146
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tracking changes in traffic feature distributions and using it to classify traffic with different behavior is very important in the domain of network anomaly detection. Shannon entropy can be used to find changes in the normal distribution of network traffic to identify anomalies. Standardized entropy provides a measure of uniformity and randomicity on the same baseline for vectors or variables in the different sample space. Random Forests is a machine learning classification algorithm. It is best suited for the analysis of complex or distribution-imbalanced data structures embedded in small to moderate data sets. Anomaly traffic always occupied a little proportion of the whole network traffic. So we employed a combination of entropy measure and Random Forests classification to detect anomalies in network traffic. Our results demonstrate that the new technique is great promise in traffic anomaly detection.
引用
收藏
页码:926 / 929
页数:4
相关论文
共 16 条
  • [1] Shape quantization and recognition with randomized trees
    Amit, Y
    Geman, D
    [J]. NEURAL COMPUTATION, 1997, 9 (07) : 1545 - 1588
  • [2] [Anonymous], 1995, P 3 INT C DOCUMENT A, DOI DOI 10.1109/ICDAR.1995.598994
  • [3] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [4] Duan Qiang., 2005, P 2005 ACM S APPL CO, P1444
  • [5] Duda R.O., 2001, Pattern Classification, V2, P654
  • [6] Hamming R.W., 1991, ART PROBABILITY SCI
  • [7] Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601
  • [8] Jaroszewicz S., 2005, P 11 ACM SIGKDD INT, P118
  • [9] Kent Alexander D., NETWORK HOST CLASSIF
  • [10] Khanna Rahul., 2006, INT WIRELESS COMMUNI, P349