Quark deconfinement transition in neutron stars with the field correlator method

被引:38
作者
Logoteta, Domenico [1 ]
Bombaci, Ignazio [2 ,3 ]
机构
[1] Univ Coimbra, Ctr Fis Comput, Dept Phys, P-3004516 Coimbra, Portugal
[2] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy
[3] INFN Sez Pisa, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 06期
关键词
1ST-ORDER PHASE-TRANSITIONS; JONA-LASINIO MODEL; EQUATION-OF-STATE; STRENGTH CORRELATORS; NUCLEAR-MATTER; 3-BODY FORCES; QCD; PULSAR; COLLAPSE; CHARGE;
D O I
10.1103/PhysRevD.88.063001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. In this article, we perform a study of the hadron-quark phase transition in cold (T = 0) neutron star matter and we calculate various structural properties of hybrid stars. For the quark phase, we make use of an equation of state (EOS) derived with the field correlator method (FCM) recently extended to the case of nonzero baryon density. For the hadronic phase, we consider both pure nucleonic and hyperonic matter, and we derive the corresponding EOS within a relativistic mean field approach. We make use of measured neutron star masses, and particularly the mass M = 1.97 +/- 0.04M(circle dot) of PSR J1614 - 2230 to constrain the values of the gluon condensate G(2), which is one of the EOS parameters within the FCM. We find that the values of G(2) extracted from the mass measurement of PSR J1614 - 2230 are consistent with the values of the same quantity derived within the FCM from recent lattice QCD calculations of the deconfinement transition temperature at zero baryon chemical potential. The FCM thus provides a powerful tool to link numerical calculations of QCD on a space-time lattice with measured neutron star masses.
引用
收藏
页数:12
相关论文
共 86 条
[1]   STRANGE STARS [J].
ALCOCK, C ;
FARHI, E ;
OLINTO, A .
ASTROPHYSICAL JOURNAL, 1986, 310 (01) :261-272
[2]   Color superconductivity in dense quark matter [J].
Alford, Mark G. ;
Schmitt, Andreas ;
Rajagopal, Krishna ;
Schaefer, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1455-1515
[3]   The order of the quantum chromodynamics transition predicted by the standard model of particle physics [J].
Aoki, Y. ;
Endrodi, G. ;
Fodor, Z. ;
Katz, S. D. ;
Szabo, K. K. .
NATURE, 2006, 443 (7112) :675-678
[4]  
Baldo M, 1997, ASTRON ASTROPHYS, V328, P274
[5]   Astrophysical constraints on the confining models:: The field correlator method [J].
Baldo, M. ;
Burgio, G. F. ;
Castorina, P. ;
Plumari, S. ;
Zappala, D. .
PHYSICAL REVIEW D, 2008, 78 (06)
[6]   NUCLEAR-MATTER PROPERTIES FROM A SEPARABLE REPRESENTATION OF THE PARIS INTERACTION [J].
BALDO, M ;
BOMBACI, I ;
GIANSIRACUSA, G ;
LOMBARDO, U ;
MAHAUX, C ;
SARTOR, R .
PHYSICAL REVIEW C, 1990, 41 (04) :1748-1761
[7]   NON-ABELIAN GAUGE THEORIES OF FERMI SYSTEMS - QUANTUM-CHROMODYNAMIC THEORY OF HIGHLY CONDENSED MATTER [J].
BALUNI, V .
PHYSICAL REVIEW D, 1978, 17 (08) :2092-2121
[8]   GROUND STATE OF MATTER AT HIGH DENSITIES - EQUATION OF STATE AND STELLAR MODELS [J].
BAYM, G ;
PETHICK, C ;
SUTHERLAND, P .
ASTROPHYSICAL JOURNAL, 1971, 170 (02) :299-+
[9]   Chiral and deconfinement aspects of the QCD transition [J].
Bazavov, A. ;
Bhattacharya, T. ;
Cheng, M. ;
DeTar, C. ;
Ding, H-T. ;
Gottlieb, Steven ;
Gupta, R. ;
Hegde, P. ;
Heller, U. M. ;
Karsch, F. ;
Laermann, E. ;
Levkova, L. ;
Mukherjee, S. ;
Petreczky, P. ;
Schmidt, C. ;
Soltz, R. A. ;
Soeldner, W. ;
Sugar, R. ;
Toussaint, D. ;
Unger, W. ;
Vranas, P. .
PHYSICAL REVIEW D, 2012, 85 (05)
[10]   Implementation of the Nambu Jona-Lasinio model in hybrid stars [J].
Benhar, O. ;
Cipollone, A. .
ASTRONOMY & ASTROPHYSICS, 2011, 525