Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems

被引:280
|
作者
Sun, Yuxuan [1 ]
Guo, Xueying [2 ]
Song, Jinhui [1 ]
Zhou, Sheng [1 ]
Jiang, Zhiyuan [3 ]
Liu, Xin [2 ]
Niu, Zhisheng [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[3] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Vehicular edge computing; task offloading; online learning; multi-armed bandit; CLOUD; VEHICLE;
D O I
10.1109/TVT.2019.2895593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vehicular edge computing system integrates the computing resources of vehicles, and provides computing services for other vehicles and pedestrians with task offloading. However, the vehicular task offloading environment is dynamic and uncertain, with fast varying network topologies, wireless channel states, and computing workloads. These uncertainties bring extra challenges to task offloading. In this paper, we consider the task offloading among vehicles, and propose a solution that enables vehicles to learn the offloading delay performance of their neighboring vehicles while offloading computation tasks. We design an adaptive learning based task offloading (ALTO) algorithm based on the multi-armed bandit theory, in order to minimize the average offloading delay. ALTO works in a distributed manner without requiring frequent state exchange, and is augmented with input-awareness and occurrence-awareness to adapt to the dynamic environment. The proposed algorithm is proved to have a sublinear learning regret. Extensive simulations are carried out under both synthetic scenario and realistic highway scenario, and results illustrate that the proposed algorithm achieves low delay performance, and decreases the average delay up to 30% compared with the existing upper confidence bound based learning algorithm.
引用
收藏
页码:3061 / 3074
页数:14
相关论文
共 50 条
  • [21] Performance Assessment of Context-aware Online Learning for Task Offloading in Vehicular Edge Computing Systems
    Al-Tarawneh, Mutaz A. B.
    Alnawayseh, Saif E.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (04) : 304 - 320
  • [22] Decentralized Convex Optimization for Joint Task Offloading and Resource Allocation of Vehicular Edge Computing Systems
    Tan, Kaige
    Feng, Lei
    Dan, Gyorgy
    Torngren, Martin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (12) : 13226 - 13241
  • [23] Self-Adaptive Learning of Task Offloading in Mobile Edge Computing Systems
    Huang, Peng
    Deng, Minjiang
    Kang, Zhiliang
    Liu, Qinshan
    Xu, Lijia
    ENTROPY, 2021, 23 (09)
  • [24] Task offloading for vehicular edge computing with edge-cloud cooperation
    Dai, Fei
    Liu, Guozhi
    Mo, Qi
    Xu, WeiHeng
    Huang, Bi
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (05): : 1999 - 2017
  • [25] Task offloading for vehicular edge computing with edge-cloud cooperation
    Fei Dai
    Guozhi Liu
    Qi Mo
    WeiHeng Xu
    Bi Huang
    World Wide Web, 2022, 25 : 1999 - 2017
  • [26] Task-Offloading Strategy Based on Performance Prediction in Vehicular Edge Computing
    Zeng, Feng
    Tang, Jiangjunzhe
    Liu, Chengsheng
    Deng, Xiaoheng
    Li, Wenjia
    MATHEMATICS, 2022, 10 (07)
  • [27] Optimal Task Offloading Strategy in Vehicular Edge Computing Based on Game Theory
    Zhang, Zheng
    Wu, Lin
    Zeng, Feng
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 554 - 562
  • [28] Deep Learning-based Task Offloading and Time Allocation for Edge Computing WBANs
    Zhang, Rongrong
    Li, Hui
    Qiao, Yingying
    Li, Mengyu
    Xia, Xu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2206 - 2211
  • [29] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [30] Mean-field reinforcement learning for decentralized task offloading in vehicular edge computing
    Shen, Si
    Shen, Guojiang
    Yang, Xiaoxue
    Xia, Feng
    Du, Hao
    Kong, Xiangjie
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 146