SIMULATION OF VELOCITY AND CONCENTRATION FIELDS IN ARTIFICIAL KIDNEYS

被引:0
|
作者
Li, Weili [1 ,2 ]
Sun, Sijie [3 ]
Zhao, Gang [1 ,2 ]
Gao, Dayong [1 ,2 ,3 ,4 ]
Ding, Weiping [1 ,2 ]
机构
[1] Univ Sci & Technol China, Ctr Biomed Engn, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230027, Anhui, Peoples R China
[3] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[4] Univ Washington, Dept Engn Mech, Seattle, WA 98195 USA
来源
PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2013, PT A | 2014年
关键词
artificial kidney; mass transfer; simulation; FLUID-FLOW; HEMODIALYZERS;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this work, velocity and concentration fields on both sides of blood and dialysate in artificial. kidneys are simulated, not only coupling the convection and diffusion mass transfers across the hollow fiber membrane, but also considering both effects of the inlet and outlet structure of blood and dialysate. Our results show that compared to the blood velocity field, the dialysate velocity filed is more uneven; furthermore, the inlet and outlet structure of dialysate affects not only the concentration field on the dialysate side but the one on the blood side as well. Therefore, in practice, for the structure optimization of artificial kidneys, the inlet and outlet of dialysate should be focused on.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Modelling and simulation of artificial locomotion systems
    Silva, MF
    Machado, JAT
    Lopes, AM
    ROBOTICA, 2005, 23 : 595 - 606
  • [32] Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems
    Van Dang, Bac
    Taylor, Robert A.
    Charlton, Alexander J.
    Le-Clech, Pierre
    Barber, Tracie Jacqueline
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2020, 13 (13) : 261 - 279
  • [33] Simulating the Kinematic Dynamo Forced by Heteroclinic Convective Velocity Fields
    I. Oprea
    P. Chossat
    D. Armbruster
    Theoretical and Computational Fluid Dynamics, 1997, 9 : 293 - 309
  • [34] Calculation of concentration and velocity distribution for hydraulic fluid flow in pipes
    Smoldyrev A.E.
    Power Technology and Engineering, 2002, 36 (4) : 243 - 246
  • [35] The Influence of Vertical Velocity Distribution on the Calculation of Suspended Sediment Concentration
    Quan, Xiufeng
    Li, Ruijie
    Li, Yuting
    Luo, Feng
    Fu, Xiaoyan
    Gou, He
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [36] Temperature and Concentration Fields in a Generator Integrated to Single Stage Heat Transformer Using Water/Carrol Mixture
    Gomez-Arias, E.
    Ibarra-Bahena, J.
    Velazquez-Avelar, L.
    Romero, R. J.
    Rodriguez-Martinez, A.
    Montiel-Gonzalez, M.
    JOURNAL OF THERMAL SCIENCE, 2014, 23 (06) : 564 - 571
  • [37] Simulation of temperature fields in arc and beam welding
    A. Mahrle
    J. Schmidt
    D. Weiss
    Heat and Mass Transfer, 2000, 36 : 117 - 126
  • [38] Force fields and scoring functions for carbohydrate simulation
    Xiong, Xiuming
    Chen, Zhaoqiang
    Cossins, Benjamin P.
    Xu, Zhijian
    Shao, Qiang
    Ding, Kai
    Zhu, Weiliang
    Shi, Jiye
    CARBOHYDRATE RESEARCH, 2015, 401 : 73 - 81
  • [39] On Simulation of Manifold Indexed Fractional Gaussian Fields
    Brouste, Alexandre
    Istas, Jacques
    Lambert-Lacroix, Sophie
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (04): : 1 - 14
  • [40] Impact of viscosity on creeping viscous fluid flow through a permeable slit: a study for the artificial kidneys
    Maqbool, Khadija
    Mehboob, Hira
    Siddiqui, Abdul Majeed
    AIMS BIOPHYSICS, 2022, 9 (04): : 308 - 329