Characterizations of amenable representations of locally compact groups

被引:0
|
作者
Cheng, Michael Yin-Hei [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Fourier algebras; Fourier-Stieltjes algebras; locally compact groups; amenability; approximate identity; factorization; weak closure; von-Neumann algebras;
D O I
10.4064/sm213-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group and let it be a unitary representation. We study amenability and H-amenability of it in terms of the weak closure of (pi circle times pi) (G) and factorization properties of associated coefficient subspaces (or subalgebras) in B(G). By applying these results, we obtain some new characterizations of amenable groups.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 50 条
  • [41] The approximation property for locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    ADVANCES IN MATHEMATICS, 2024, 438
  • [42] PEGO THEOREM ON LOCALLY COMPACT ABELIAN GROUPS
    Gorka, Przemyslaw
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
  • [43] INNER AMENABILITY OF LOCALLY COMPACT QUANTUM GROUPS
    Ghanei, Mohammad Reza
    Nasr-Isfahani, Rasoul
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)
  • [44] Representations of locally compact groups on QSLp-spaces and a p-analog of the Fourier-Stieltjes algebra
    Runde, V
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 221 (02) : 379 - 397
  • [45] Generalized group algebras of locally compact groups
    Jain, S. K.
    Singh, Ajit Iqbal
    Srivastava, Ashish K.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3559 - 3563
  • [46] A Note on Amenability of Locally Compact Quantum Groups
    Soltan, Piotr M.
    Viselter, Ami
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02): : 424 - 430
  • [47] On the similarity problem for locally compact quantum groups
    Brannan, Michael
    Youn, Sang-Gyun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (04) : 1313 - 1337
  • [48] Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms
    Skalski, Adam
    Viselter, Ami
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 124 : 59 - 105
  • [49] Amenable fusion algebraic actions of discrete quantum groups on compact quantum spaces
    Xiao Chen
    Debashish Goswami
    Huichi Huang
    Banach Journal of Mathematical Analysis, 2022, 16
  • [50] Amenable fusion algebraic actions of discrete quantum groups on compact quantum spaces
    Chen, Xiao
    Goswami, Debashish
    Huang, Huichi
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)