Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

被引:40
作者
Oh, Taeseob [1 ]
Kim, Myeongjin [1 ]
Park, Dabin [1 ]
Kim, Jooheon [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, 211 Heukseok Dong, Seoul 156756, South Korea
关键词
Oxygen reduction reaction; Metal-free electrocatalyst; Mesoporous carbon sphere; Nitrogen and sulfur co-doping; Synergistic effect; METAL-FREE ELECTROCATALYSTS; DOPED CARBON; BIFUNCTIONAL ELECTROCATALYST; GRAPHENE; NANOTUBES; CATALYSTS; NANOPARTICLES; EVOLUTION; PHOSPHORUS; NANOSHEETS;
D O I
10.1016/j.apsusc.2018.01.186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 degrees C ( NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 51 条
[1]   Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid [J].
Byon, Hye Ryung ;
Suntivich, Jin ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3421-3428
[2]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[3]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[4]   Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction [J].
Choi, E. Y. ;
Kim, C. K. .
SCIENTIFIC REPORTS, 2017, 7
[5]   Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study [J].
Dai, Jiayu ;
Yuan, Jianmin ;
Giannozzi, Paolo .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]   Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage [J].
Fang, Yin ;
Lv, Yingying ;
Che, Renchao ;
Wu, Haoyu ;
Zhang, Xuehua ;
Gu, Dong ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1524-1530
[8]   Cobalt Sulfide Nanoparticles Grown on Nitrogen and Sulfur Codoped Graphene Oxide: An Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Ganesan, Pandian ;
Prabu, Moni ;
Sanetuntikul, Jakkid ;
Shanmugam, Sangaraju .
ACS CATALYSIS, 2015, 5 (06) :3625-3637
[9]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764