additive model;
power transformation;
Gibbs sampler;
regression spline;
robust estimation;
D O I:
10.1016/0304-4076(95)01763-1
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
This paper estimates an additive model semiparametrically, while automatically selecting the significant independent variables and the appropriate power transformation of the dependent variable. The nonlinear variables are modeled as regression splines, with significant knots selected from a large number of candidate knots. The estimation is made robust by modeling the errors as a mixture of normals. A Bayesian approach is used to select the significant knots, the power transformation, and to identify outliers using the Gibbs sampler to carry out the computation. Empirical evidence is given that the sampler works well on both simulated and real examples and that in the univariate case it compares favorably with a kernel-weighted local linear smoother. The variable selection algorithm in the paper is substantially faster than previous Bayesian variable selection algorithms.
机构:
Brown Univ, Dept Biostat, Providence, RI 02912 USA
Brown Univ, Ctr Stat Sci, Providence, RI 02912 USA
Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USABrown Univ, Dept Biostat, Providence, RI 02912 USA
Crawford, Lorin
Wood, Kris C.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Pharmacol & Canc Biol, Durham, NC USABrown Univ, Dept Biostat, Providence, RI 02912 USA
Wood, Kris C.
Zhou, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USABrown Univ, Dept Biostat, Providence, RI 02912 USA
Zhou, Xiang
Mukherjee, Sayan
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Stat Sci, Durham, NC USA
Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
Duke Univ, Dept Math, Durham, NC 27706 USA
Duke Univ, Dept Bioinformat & Biostat, Durham, NC USABrown Univ, Dept Biostat, Providence, RI 02912 USA
机构:
Univ Seoul, Dept Artificial Intelligence, Seoul, South KoreaSungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea
Kim, Joungyoun
Wang, Xinlei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Arlington, Coll Sci, Ctr Data Sci Res & Educ, Arlington, TX USA
Univ Texas Arlington, Dept Math, Arlington, TX USASungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea
Wang, Xinlei
Lim, Johan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Stat, Seoul 08826, South KoreaSungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea