Multiplicity of homoclinic solutions for singular second-order conservative systems

被引:10
作者
Bertotti, ML [1 ]
Jeanjean, L [1 ]
机构
[1] UNIV PARIS 12, EQUIPE ANAL & MATH APPL, F-93166 NOISY LE GRAND, FRANCE
关键词
D O I
10.1017/S0308210500023349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of second-order systems q = -del V(q) with q(t) is an element of R(n), for which the potential energy V:R(n)\S --> R admits a (possibly unbounded) singular set S subset of R(n) and has a unique absolute maximum at 0 is an element of R(n). Under some conditions on S and V, we prove the existence of several solutions homoclinic to 0.
引用
收藏
页码:1169 / 1180
页数:12
相关论文
共 50 条
[41]   Existence and multiplicity of positive solutions for second-order differential systems [J].
Xu, Housheng ;
Zhang, Tongshan ;
Ma, Guangtao ;
Zhang, Qingling .
Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science), 2007, 23 (06) :1053-1056
[42]   Existence and multiplicity of periodic solutions for second-order systems at resonance [J].
Wang, Jun ;
Zhang, Fubao ;
Wei, Jicheng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3782-3790
[43]   Infinitely many homoclinic solutions for second-order discrete Hamiltonian systems [J].
Chen, Huiwen ;
He, Zhimin .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (12) :1940-1951
[44]   The existence of homoclinic solutions for second-order Hamiltonian systems with periodic potentials [J].
Yang, Ming-Hai ;
Han, Zhi-Qing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2742-2751
[45]   Heteroclinic and homoclinic solutions for nonlinear second-order coupled systems with φ-Laplacians [J].
de Sousa, Robert ;
Minhos, Feliz .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05)
[46]   Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems [J].
Huiwen Chen ;
Zhimin He .
Advances in Difference Equations, 2014
[47]   Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential [J].
Tang, X. H. ;
Xiao, Li .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :586-594
[48]   Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems [J].
Wu, Dong-Lun ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) :154-166
[49]   Existence of homoclinic solutions for some second-order discrete Hamiltonian systems [J].
Chen, Peng ;
Tang, X. H. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (04) :633-648
[50]   Homoclinic Solutions for a Second-Order Nonperiodic Asymptotically Linear Hamiltonian Systems [J].
Zheng, Qiang .
ABSTRACT AND APPLIED ANALYSIS, 2013,