Multiplicity of homoclinic solutions for singular second-order conservative systems

被引:10
作者
Bertotti, ML [1 ]
Jeanjean, L [1 ]
机构
[1] UNIV PARIS 12, EQUIPE ANAL & MATH APPL, F-93166 NOISY LE GRAND, FRANCE
关键词
D O I
10.1017/S0308210500023349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of second-order systems q = -del V(q) with q(t) is an element of R(n), for which the potential energy V:R(n)\S --> R admits a (possibly unbounded) singular set S subset of R(n) and has a unique absolute maximum at 0 is an element of R(n). Under some conditions on S and V, we prove the existence of several solutions homoclinic to 0.
引用
收藏
页码:1169 / 1180
页数:12
相关论文
共 17 条
[1]  
AMBROSETTI A, 1992, RES NOTES MATH, V239, P21
[2]  
Ambrosetti A., 1993, Periodic solutions of singular Lagrangian Systems
[3]   A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN-SYSTEMS WITH SINGULAR POTENTIALS [J].
BAHRI, A ;
RABINOWITZ, PH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :412-428
[4]  
BERTOTTI ML, 1995, DIFFERENTIAL INTEGRA, V8, P1733
[5]   MULTIPLE HOMOCLINIC ORBITS FOR AUTONOMOUS, SINGULAR POTENTIALS [J].
BESSI, U .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :785-802
[6]  
BOLOTIN S. V., 1992, VESTNIK MOSKOV U 1, V6, P34
[7]  
BOLOTIN SV, 1978, PMM-J APPL MATH MEC+, V42, P256
[8]  
BOLOTIN SV, 1995, AM MATH SOC TRANSL, V168, P21
[9]  
BOLOTIN SV, 1981, THESIS MOSCOW STATE
[10]   EXISTENCE AND MULTIPLICITY OF HOMOCLINIC ORBITS FOR POTENTIALS ON UNBOUNDED-DOMAINS [J].
CALDIROLI, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :317-339