Optical Soliton Perturbation with Improved Nonlinear Schrodinger's Equation in Nano Fibers

被引:125
作者
Savescu, Michelle [1 ,2 ]
Khan, Kaisar R. [3 ]
Kohl, Russell W. [4 ]
Moraru, Luminita [5 ]
Yildirim, Ahmet
Biswas, Anjan [1 ,6 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Kuztown Univ Penn, Dept Math, Kutztown, PA 19530 USA
[3] SUNY, Dept Elect Engn Technol, Canton, NY 13617 USA
[4] Univ Maryland Eastern Shore, Dept Math & Comp Sci, Princess Anne, MD 21853 USA
[5] Univ Dunarea de Jos Galati, Dept Chem Phys & Environm, Galati 800201, Romania
[6] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
Nano Fibers; Solitons; Hamiltonian Perturbations; Traveling Waves; Exact Solutions; RIB WAVE-GUIDES; SPATIAL SOLITONS; PROPAGATION; FABRICATION; GENERATION; EVOLUTION; BRIGHT; FIELD; BENT;
D O I
10.1166/jno.2013.1459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper shines light on the dynamics of solitons in nano optical fibers that is governed by the improved version of the nonlinear Schrodinger's equation, in presence of Hamiltonian perturbation terms that are considered with full nonlinearity. The traveling wave hypothesis is applied to extract the exact 1-soliton solution to the model. Subsequently, the ansatz method is applied to obtain the bright and dark solitons as well as the singular solitons to the model. There are several constraint conditions that fall out during the course of derivation of the soliton solutions. The types of nonlinearity that are studied here are the Kerr law, power law, parabolic law, dual-power law and finally the log-law nonlinearity.
引用
收藏
页码:208 / 220
页数:13
相关论文
共 39 条
[1]  
Agarwal G. P., 2001, NONLINEAR FIBER OPTI
[2]   Atom trapping and guiding with a subwavelength-diameter optical fiber [J].
Balykin, VI ;
Hakuta, K ;
Le Kien, F ;
Liang, JQ ;
Morinaga, M .
PHYSICAL REVIEW A, 2004, 70 (01) :011401-1
[3]   Impedance matching in RF excited fast axial flow CO2 laser: The role of the capacitance due to laser head [J].
Bhagat, M. S. ;
Biswas, A. K. ;
Rana, L. B. ;
Kukreja, L. M. .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2217-2222
[4]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[5]  
Biswas A, 2012, J OPTOELECTRON ADV M, V14, P571
[6]   Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J].
Bogaerts, W ;
Baets, R ;
Dumon, P ;
Wiaux, V ;
Beckx, S ;
Taillaert, D ;
Luyssaert, B ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :401-412
[7]  
Crutcher S, 2012, J OPTOELECTRON ADV M, V14, P29
[8]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[9]   Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation [J].
Geng, Xianguo ;
Lv, Yanyan .
NONLINEAR DYNAMICS, 2012, 69 (04) :1621-1630
[10]   Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media [J].
Green, Patrice D. ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :3865-3873