On the spectral characterization of ?-shape trees

被引:4
|
作者
Liu, Fenjin [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2013年 / 61卷 / 03期
关键词
Pi-shape trees; adjacency spectrum; spectral characterization; cospectral graphs; GRAPHS;
D O I
10.1080/03081087.2012.672569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ?-shape tree is a tree with exactly two of its vertices having the maximum degree 3. In this article, we classify the ?-shape trees into six types according to the number of their closed walks of length 6. Then we complete the spectral characterization for one type. We show that all graphs of one such type are determined by the spectrum. Another type i.e., W n is known to have the unique cospectral mate C 4???P n . Moreover, we find cospectral graphs of some graphs for the remaining four types.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 50 条
  • [41] The Spectral Dimension of Generic Trees
    Bergfinnur Durhuus
    Thordur Jonsson
    John F. Wheater
    Journal of Statistical Physics, 2007, 128 : 1237 - 1260
  • [42] ON A CHARACTERIZATION OF TREES
    BULA, WD
    TYMCHATYN, ED
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (04) : 1107 - 1108
  • [43] A Characterization of Trees
    Chen, Haoran
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (06): : 542 - 543
  • [44] Characterization of the shape of a scattering obstacle using the spectral data of the far field operator
    Kirsch, A
    INVERSE PROBLEMS, 1998, 14 (06) : 1489 - 1512
  • [45] The shape of unlabeled rooted random trees
    Drmota, Michael
    Gittenberger, Bernhard
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2028 - 2063
  • [46] SHAPE DESCRIPTORS FOR LABELING CONCAVITY TREES
    BATCHELOR, BG
    JOURNAL OF CYBERNETICS, 1980, 10 (1-3): : 233 - 237
  • [47] Shape retrieval using concavity trees
    El Badawy, O
    Kamel, M
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 111 - 114
  • [48] ON THE AVERAGE SHAPE OF BINARY-TREES
    RUSKEY, F
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01): : 43 - 50
  • [49] Trees of Knowledge: Science and the Shape of Genealogy
    Kaiserfeld, Thomas
    HISTORISK TIDSKRIFT, 2020, 140 (04): : 740 - 742
  • [50] ON DESCRIBING THE SHAPE OF ROOTED AND UNROOTED TREES
    PAGE, RDM
    CLADISTICS, 1993, 9 (01) : 93 - 99