A new modified nonmonotone adaptive trust region method for unconstrained optimization

被引:30
作者
Cui, Zhaocheng [1 ]
Wu, Boying [2 ]
机构
[1] Shandong Jiaotong Univ, Dept Math & Phys, Jinan 250023, Shandong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150080, Peoples R China
关键词
Unconstrained optimization; Adaptive trust region method; Nonmonotone technique; Global convergence; Superlinear convergence; LINE SEARCH TECHNIQUE; GLOBAL CONVERGENCE; ALGORITHMS; MINIMIZATION;
D O I
10.1007/s10589-012-9460-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present an adaptive trust region method for solving unconstrained optimization problems which combines nonmonotone technique with a new update rule for the trust region radius. At each iteration, our method can adjust the trust region radius of related subproblem. We construct a new ratio to adjust the next trust region radius which is different from the ratio in the traditional trust region methods. The global and superlinear convergence results of the method are established under reasonable assumptions. Numerical results show that the new method is efficient for unconstrained optimization problems.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]  
[Anonymous], TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857
[3]  
[Anonymous], 1975, NONLINEAR PROGRAMMIN, DOI DOI 10.1016/B978-0-12-468650-2.50005-5
[4]  
[Anonymous], 1998, ADV NONLINEAR PROGRA, DOI DOI 10.1007/978-1-4613-3335-7_7
[5]   NONMONOTONIC TRUST REGION ALGORITHM [J].
DENG, NY ;
XIAO, Y ;
ZHOU, FJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :259-285
[6]  
Fan J.-y., 2001, P 5 INT C OPT TECHN
[7]  
Gertz E. M., 1963, MATH PROGRAM SA, P1
[8]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716
[9]   A class of nonmonotone trust region algorithms for unconstrained optimization problems [J].
Ke, XW .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (09) :927-932
[10]   A nonmonotone trust region method based on nonincreasing technique of, weighted average of the successive function values [J].
Mo, Jiangtao ;
Liu, Chunyan ;
Yan, Shicui .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (01) :97-108