Synchronization properties of self-sustained mechanical oscillators

被引:10
作者
Arroyo, Sebastian I. [1 ,2 ]
Zanette, Damian H. [1 ,2 ,3 ]
机构
[1] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
AMPLIFIER-NOISE; POPULATIONS;
D O I
10.1103/PhysRevE.87.052910
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study, both analytically and numerically, the dynamics of mechanical oscillators kept in motion by a feedback force, which is generated electronically from a signal produced by the oscillators themselves. This kind of self-sustained systems may become standard in the design of frequency-control devices at microscopic scales. Our analysis is thus focused on their synchronization properties under the action of external forces and on the joint dynamics of two to many coupled oscillators. Existence and stability of synchronized motion are assessed in terms of the mechanical properties of individual oscillators, namely, their natural frequencies and damping coefficients, and synchronization frequencies are determined. Similarities and differences with synchronization phenomena in other coupled oscillating systems are emphasized.
引用
收藏
页数:11
相关论文
共 24 条
[1]   A study of electrostatic force nonlinearities in resonant microstructures [J].
Agarwal, Manu ;
Chandorkar, Saurabh A. ;
Mehta, Harsh ;
Candler, Robert N. ;
Kim, Bongsang ;
Hopcroft, Matthew A. ;
Melamud, Renata ;
Jha, Chandra M. ;
Bahl, Gaurav ;
Yama, Gary ;
Kenny, Thomas W. ;
Murmann, Boris .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[2]   Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators [J].
Agarwal, Manu ;
Mehta, Harsh ;
Candler, Robert N. ;
Chandorkar, Saurabh A. ;
Kim, Bongsang ;
Hopcroft, Matthew A. ;
Melamud, Renata ;
Bahl, Gaurav ;
Yama, Gary ;
Kenny, Thomas W. ;
Murmann, Boris .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[3]  
[Anonymous], 1998, Classical Dynamics: A Contemporary Approach, Classical Dynamics: A Contemporary Approach
[4]  
[Anonymous], 2003, COURIER CORPORATION
[5]   AMPLITUDE RESPONSE OF COUPLED OSCILLATORS [J].
ARONSON, DG ;
ERMENTROUT, GB ;
KOPELL, N .
PHYSICA D, 1990, 41 (03) :403-449
[6]  
Benedetto JohnJ., 1996, Harmonic Analysis and Applications
[7]  
Bittanti S., 2010, PERIODIC SYSTEMS FIL
[8]   Nanoelectromechanical systems [J].
Craighead, HG .
SCIENCE, 2000, 290 (5496) :1532-1535
[9]   Nanoelectromechanical systems [J].
Ekinci, KL ;
Roukes, ML .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)
[10]   EVADING AMPLIFIER NOISE IN NONLINEAR OSCILLATORS [J].
GREYWALL, DS ;
YURKE, B ;
BUSCH, PA ;
PARGELLIS, AN ;
WILLETT, RL .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :2992-2995