Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction

被引:112
作者
Rao, R. Prasada [1 ]
Sharma, N. [2 ]
Peterson, V. K. [2 ]
Adams, S. [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
[2] Australian Nucl Sci & Technol Org, Kirrawee Dc, NSW 2232, Australia
关键词
Fast ion conducting solids; Neutron diffraction; Microstructure-conductivity relationships; All solid state lithium batteries; IONIC-CONDUCTIVITY; LI-ARGYRODITES; LI6PS5X; LI7PS6;
D O I
10.1016/j.ssi.2012.09.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion conducting argyrodites Li6PS5X (X = Cl, Br, I) are a promising class of fast-ion conductors for all-solid state Li-ion batteries. To gain a deeper insight into the phase formation of Li6PS5Cl, in situ neutron diffraction studies are carried out on a stoichiometric ball-milled precursor mixture during thermal treatment. The evolution of the S2-/Cl- anion disorder and its correlation with ionic conductivity are reported here. In contrast to earlier reports, an argyrodite phase is found to form between 80 and 150 degrees C, but the phase shows only moderate conductivity when crystallized at such low temperatures and further thermal treatment is required to access the highly conducting phase. The maximum room-temperature ionic conductivity of 1.1 x 10(-3) S/cm is observed for samples annealed at intermediate temperatures (250 degrees C). When ball-milled glass-ceramic precursors for Li6PS5Cl are crystallized with a constant slow heating rate, the initially formed argyrodite phase is found to be Li7PS6, which is then gradually converted into Li6PS5Cl at higher temperatures. The industrial requirements for minimizing cost by using lower annealing temperatures thus need to be balanced with the requirements of obtaining the highest conducting composition of the phase for performance in all-solid state batteries. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 1987, GEN STRUCTURE ANAL S
[2]   Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X=Br, I) argyrodites [J].
Beeken, RB ;
Garbe, JJ ;
Gillis, JM ;
Petersen, NR ;
Podoll, BW ;
Stoneman, MR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (05) :882-886
[3]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[4]   Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements [J].
Deiseroth, Hans-Joerg ;
Maier, Joachim ;
Weichert, Katja ;
Nickel, Vera ;
Kong, Shiao-Tong ;
Reiner, Christof .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2011, 637 (10) :1287-1294
[5]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[6]   Structural Characterisation of the Li Argyrodites Li7PS6 and Li7PSe6 and their Solid Solutions: Quantification of Site Preferences by MAS-NMR Spectroscopy [J].
Kong, Shiao Tong ;
Guen, Oezguel ;
Koch, Barbara ;
Deiseroth, Hans Joerg ;
Eckert, Hellmut ;
Reiner, Christof .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (17) :5138-5147
[7]   ARGYRODITES - NEW FAMILY OF TETRAHEDRALLY CLOSE-PACKED STRUCTURES [J].
KUHS, WF ;
NITSCHE, R ;
SCHEUNEMANN, K .
MATERIALS RESEARCH BULLETIN, 1979, 14 (02) :241-248
[8]   Studies of lithium argyrodite solid electrolytes for all-solid-state batteries [J].
Rao, R. P. ;
Adams, S. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1804-1807
[9]   Molecular dynamics simulation of ternary glasses Li2S-P2S5-LiI [J].
Rao, R. Prasada ;
Seshasayee, M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (30-31) :3310-3314
[10]   Preparation and characterization of NASICON type Li+ ionic conductors [J].
Rao, Rayavarapu Prasada ;
Maohua, Chen ;
Adams, Stefan .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) :3349-3354