RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES

被引:0
|
作者
Hostettler, Roland [1 ]
Sarkka, Simo [1 ]
Godsill, Simon J. [2 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Univ Cambridge, Dept Engn, Cambridge, England
来源
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2017年
关键词
Gaussian processes; statistical learning; Monte Carlo methods; parameter estimation; INFERENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider parameter estimation in latent, spatio-temporal Gaussian processes using particle Markov chain Monte Carlo methods. In particular, we use spectral decomposition of the covariance function to obtain a high-dimensional state-space representation of the Gaussian processes, which is assumed to be observed through a nonlinear non-Gaussian likelihood. We develop a Rao-Blackwellized particle Gibbs sampler to sample the state trajectory and show how to sample the hyperparameters and possible parameters in the likelihood. The proposed method is evaluated on a spatio-temporal population model and the predictive performance is evaluated using leave-one-out cross-validation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case
    Bachoc, Francois
    BERNOULLI, 2018, 24 (02) : 1531 - 1575
  • [42] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664
  • [43] Land Cover Classification With Gaussian Processes Using Spatio-Spectro-Temporal Features
    Bellet, Valentine
    Fauvel, Mathieu
    Inglada, Jordi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [45] Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference
    Mateo-Sanchis, Anna
    Munoz-Mari, Jordi
    Perez-Suay, Adrian
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1647 - 1651
  • [46] Significance tests for covariate-dependent trends in inhomogeneous spatio-temporal point processes
    Diaz-Avalos, Carlos
    Juan, P.
    Mateu, J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (03) : 593 - 609
  • [47] Estimation of a Stochastic Spatio-temporal Model of the Flow-front Dynamics with Varying Parameters
    Nauheimer, Michael
    Relan, Rishi
    Thygesen, Uffe Hogsbro
    Madsen, Henrik
    9TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS AND COMPOSITES: FROM AEROSPACE TO NANOTECHNOLOGY, 2018, 1981
  • [48] INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
    Opitz, Thomas
    Huser, Raphael
    Bakka, Haakon
    Rue, Havard
    EXTREMES, 2018, 21 (03) : 441 - 462
  • [49] Data assimilation for large-scale spatio-temporal systems using a location particle smoother
    Briggs, Jonathan
    Dowd, Michael
    Meyer, Renate
    ENVIRONMETRICS, 2013, 24 (02) : 81 - 97
  • [50] A Composite Likelihood-Based Approach for Change-Point Detection in Spatio-Temporal Processes
    Zhao, Zifeng
    Ma, Ting Fung
    Ng, Wai Leong
    Yau, Chun Yip
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3086 - 3100