RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES

被引:0
|
作者
Hostettler, Roland [1 ]
Sarkka, Simo [1 ]
Godsill, Simon J. [2 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Univ Cambridge, Dept Engn, Cambridge, England
来源
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2017年
关键词
Gaussian processes; statistical learning; Monte Carlo methods; parameter estimation; INFERENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider parameter estimation in latent, spatio-temporal Gaussian processes using particle Markov chain Monte Carlo methods. In particular, we use spectral decomposition of the covariance function to obtain a high-dimensional state-space representation of the Gaussian processes, which is assumed to be observed through a nonlinear non-Gaussian likelihood. We develop a Rao-Blackwellized particle Gibbs sampler to sample the state trajectory and show how to sample the hyperparameters and possible parameters in the likelihood. The proposed method is evaluated on a spatio-temporal population model and the predictive performance is evaluated using leave-one-out cross-validation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [32] Covariance parameter estimation of Gaussian processes with approximated functional inputs
    Reding, Lucas
    Lopez-Lopera, Andres F.
    Bachoc, Francois
    JOURNAL OF MULTIVARIATE ANALYSIS, 2025, 205
  • [33] A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
    Benitez, Domingo
    Montero, Gustavo
    Rodriguez, Eduardo
    Greiner, David
    Oliver, Albert
    Gonzalez, Luis
    Montenegro, Rafael
    MATHEMATICS, 2020, 8 (11) : 1 - 22
  • [34] A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes
    Priyanka, A. G.
    Monti, Antonello
    Ponci, Ferdinanda
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [35] Particle filters for state and parameter estimation in batch processes
    Chen, T
    Morris, J
    Martin, E
    JOURNAL OF PROCESS CONTROL, 2005, 15 (06) : 665 - 673
  • [36] Online relative risks/rates estimation in spatial and spatio-temporal disease mapping
    Adin, Aritz
    Goicoa, Tomas
    Ugarte, Maria Dolores
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 172 : 103 - 116
  • [37] Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images
    Papacek, Stepan
    Kana, Radek
    Matonoha, Ctirad
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (7-8) : 1907 - 1912
  • [38] Estimation and Identification of Spatio-Temporal Models with Applications in Engineering, Healthcare and Social Science
    Mercieca, Julian
    Kadirkamanathan, Visakan
    ANNUAL REVIEWS IN CONTROL, 2016, 42 : 285 - 298
  • [39] Mass Transfer in a Porous Particle - MCMC Assisted Parameter Estimation of Dynamic Model under Uncertainties
    Suominen, Petteri
    Kilpio, Teuvo
    Salmi, Tapio
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 277 - 282
  • [40] Parameter estimation for autoregressive Gaussian-mixture processes: The EMAX algorithm
    Verbout, SM
    Ooi, JM
    Ludwig, JT
    Oppenheim, AV
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) : 2744 - 2756