RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES

被引:0
|
作者
Hostettler, Roland [1 ]
Sarkka, Simo [1 ]
Godsill, Simon J. [2 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Univ Cambridge, Dept Engn, Cambridge, England
来源
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2017年
关键词
Gaussian processes; statistical learning; Monte Carlo methods; parameter estimation; INFERENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider parameter estimation in latent, spatio-temporal Gaussian processes using particle Markov chain Monte Carlo methods. In particular, we use spectral decomposition of the covariance function to obtain a high-dimensional state-space representation of the Gaussian processes, which is assumed to be observed through a nonlinear non-Gaussian likelihood. We develop a Rao-Blackwellized particle Gibbs sampler to sample the state trajectory and show how to sample the hyperparameters and possible parameters in the likelihood. The proposed method is evaluated on a spatio-temporal population model and the predictive performance is evaluated using leave-one-out cross-validation.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Modeling of Spatio-Temporal Hawkes Processes With Randomized Kernels
    Ilhan, Fatih
    Kozat, Suleyman S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 4946 - 4958
  • [22] Monitoring dynamic spatio-temporal ecological processes optimally
    Williams, Perry J.
    Hooten, Mevin B.
    Womble, Jamie N.
    Esslinger, George G.
    Bower, Michael R.
    ECOLOGY, 2018, 99 (03) : 524 - 535
  • [23] Modelling zero-inflated spatio-temporal processes
    Fernandes, Marcus V. M.
    Schmidt, Alexandra M.
    Migon, Helio S.
    STATISTICAL MODELLING, 2009, 9 (01) : 3 - 25
  • [24] Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes
    D'Angelo, Nicoletta
    Adelfio, Giada
    STATISTICAL PAPERS, 2024, 65 (06) : 3651 - 3679
  • [25] Practical parameter identifiability for spatio-temporal models of cell invasion
    Simpson, Matthew J.
    Baker, Ruth E.
    Vittadello, Sean T.
    Maclaren, Oliver J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (164)
  • [26] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [27] DISTRIBUTED SCHEDULING OF SENSOR NETWORKS FOR IDENTIFICATION OF SPATIO-TEMPORAL PROCESSES
    Patan, Maciej
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (02) : 299 - 311
  • [28] Optimal rates for parameter estimation of stationary Gaussian processes
    Es-Sebaiy, Khalifa
    Viensb, Frederi G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3018 - 3054
  • [29] Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile
    Liu, Wei
    Niranjan, Mahesan
    BIOINFORMATICS, 2012, 28 (03) : 366 - 372
  • [30] Dynamic Gaussian process regression for spatio-temporal data based on local clustering
    Wang, Binglin
    Yan, Liang
    Rong, Qi
    Chen, Jiangtao
    Shen, Pengfei
    Duan, Xiaojun
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (12) : 245 - 257