共 50 条
RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES
被引:0
|作者:
Hostettler, Roland
[1
]
Sarkka, Simo
[1
]
Godsill, Simon J.
[2
]
机构:
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Univ Cambridge, Dept Engn, Cambridge, England
来源:
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING
|
2017年
关键词:
Gaussian processes;
statistical learning;
Monte Carlo methods;
parameter estimation;
INFERENCE;
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In this paper, we consider parameter estimation in latent, spatio-temporal Gaussian processes using particle Markov chain Monte Carlo methods. In particular, we use spectral decomposition of the covariance function to obtain a high-dimensional state-space representation of the Gaussian processes, which is assumed to be observed through a nonlinear non-Gaussian likelihood. We develop a Rao-Blackwellized particle Gibbs sampler to sample the state trajectory and show how to sample the hyperparameters and possible parameters in the likelihood. The proposed method is evaluated on a spatio-temporal population model and the predictive performance is evaluated using leave-one-out cross-validation.
引用
收藏
页数:6
相关论文