RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES

被引:0
|
作者
Hostettler, Roland [1 ]
Sarkka, Simo [1 ]
Godsill, Simon J. [2 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Univ Cambridge, Dept Engn, Cambridge, England
来源
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2017年
关键词
Gaussian processes; statistical learning; Monte Carlo methods; parameter estimation; INFERENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider parameter estimation in latent, spatio-temporal Gaussian processes using particle Markov chain Monte Carlo methods. In particular, we use spectral decomposition of the covariance function to obtain a high-dimensional state-space representation of the Gaussian processes, which is assumed to be observed through a nonlinear non-Gaussian likelihood. We develop a Rao-Blackwellized particle Gibbs sampler to sample the state trajectory and show how to sample the hyperparameters and possible parameters in the likelihood. The proposed method is evaluated on a spatio-temporal population model and the predictive performance is evaluated using leave-one-out cross-validation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Combining particle MCMC with Rao-Blackwellized Monte Carlo data association for parameter estimation in multiple target tracking
    Kokkala, Juho
    Sarkka, Simo
    DIGITAL SIGNAL PROCESSING, 2015, 47 : 84 - 95
  • [2] Rao-Blackwellized Particle Smoothers for Conditionally Linear Gaussian Models
    Lindsten, Fredrik
    Bunch, Pete
    Sarkka, Simo
    Schon, Thomas B.
    Godsill, Simon J.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 353 - 365
  • [3] Rao-Blackwellized particle smoothing for simultaneous localization and mapping
    Kok, Manon
    Solin, Arno
    Schon, Thomas B.
    DATA-CENTRIC ENGINEERING, 2024, 5
  • [4] A RAO-BLACKWELLIZED PARTICLE FILTER FOR JOINT PARAMETER ESTIMATION AND BIOMASS TRACKING IN A STOCHASTIC PREDATOR-PREY SYSTEM
    Martin-Fernandez, Laura
    Gilioli, Gianni
    Lanzarone, Ettore
    Miguez, Joaquin
    Pasquali, Sara
    Ruggeri, Fabrizio
    Ruiz, Diego P.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2014, 11 (03) : 573 - 597
  • [5] Particle rejuvenation of Rao-Blackwellized sequential Monte Carlo smoothers for conditionally linear and Gaussian models
    Ngoc Minh Nguyen
    Le Corff, Sylvain
    Moulines, Eric
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2017,
  • [6] A Rao-Blackwellized Particle Filter With Variational Inference for State Estimation With Measurement Model Uncertainties
    Cheng, Cheng
    Tourneret, Jean-Yves
    Lu, Xiaodong
    IEEE ACCESS, 2020, 8 : 55665 - 55675
  • [7] A Rao-Blackwellized Particle Filter for Joint Channel/Symbol Estimation in MC-DS-CDMA Systems
    Giremus, Audrey
    Grivel, Eric
    Grolleau, Julie
    Najim, Mohamed
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (08) : 2292 - 2304
  • [8] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [9] Sparse Spatio-temporal Gaussian Processes with General Likelihoods
    Hartikainen, Jouni
    Riihimaki, Jaakko
    Sarkka, Simo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 193 - 200
  • [10] Parameter estimation for growth interaction processes using spatio-temporal information
    Redenbach, Claudia
    Sarkka, Aila
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 672 - 683