Discrete perturbation estimates for eigenpairs of Fredholm operator-valued functions

被引:4
作者
Grubisic, Luka [1 ]
Grbic, Antonia [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
基金
美国国家科学基金会;
关键词
Nonlinear eigenvalue problems; Numerical methods; Contour integrals;
D O I
10.1016/j.amc.2015.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present perturbation estimates for eigenvalue and eigenvector approximations for a class of Fredholm operator-valued functions. Our approach is based on perturbation estimates for the generalized resolvents and the exponential convergence of the contour integration by the trapezoidal rule. We use discrete residual functions to estimate the resolvents a posteriori. Numerical experiments are also presented. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:632 / 647
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 2003, N HOLLAND MATH STUDI
[2]  
[Anonymous], 2013, APPROXIMATION THEORY
[3]   An extension of MATLAB to continuous functions and operators [J].
Battles, Z ;
Trefethen, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1743-1770
[4]   Finding Eigenvalues of Holomorphic Fredholm Operator Pencils Using Boundary Value Problems and Contour Integrals [J].
Beyn, Wolf-Juergen ;
Latushkin, Yuri ;
Rottmann-Matthes, Jens .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (02) :155-211
[5]   An integral method for solving nonlinear eigenvalue problems [J].
Beyn, Wolf-Juergen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :3839-3863
[6]   LOCALIZATION THEOREMS FOR NONLINEAR EIGENVALUE PROBLEMS [J].
Bindel, David ;
Hood, Amanda .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) :1728-1749
[7]   GENERALIZATION OF THE BAUER-FIKE THEOREM [J].
CHU, KWE .
NUMERISCHE MATHEMATIK, 1986, 49 (06) :685-691
[8]   AN ALTERNATIVE APPROACH TO (THE TEACHING OF) RANK, BASIS, AND DIMENSION [J].
DEBOOR, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 146 :221-229
[9]   Spectral approximation of quadratic operator polynomials arising in photonic band structure calculations [J].
Engstrom, Christian .
NUMERISCHE MATHEMATIK, 2014, 126 (03) :413-440
[10]  
Gohberg I. C., 1971, Mat. Sb. (N.S.), V84, P607