Explicit Hecke series for symplectic group of genus 4

被引:0
作者
Vankov, Kirill [1 ]
机构
[1] Univ Franche Comte, Lab Math Besancon, UFR Sci & Tech, F-25030 Besancon, France
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2011年 / 23卷 / 01期
关键词
SHIMURAS CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus n. This conjecture was proved by Andrianov for arbitrary genus n, but the explicit expression was out of reach for genus higher than 3. For genus n = 4, we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with polynomial coefficients. Then we recover the coefficients of this fraction as elements of the Hecke algebra using polynomial representation of basis Hecke operators under the spherical map. Numerical examples of these fractions for special choice of Satake parameters are given.
引用
收藏
页码:279 / 298
页数:20
相关论文
empty
未找到相关数据