Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold

被引:316
|
作者
Derr, N. D. [1 ,2 ,3 ]
Goodman, B. S. [1 ]
Jungmann, R. [4 ,5 ]
Leschziner, A. E. [6 ]
Shih, W. M. [2 ,3 ,5 ]
Reck-Peterson, S. L. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[5] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[6] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
CYTOPLASMIC DYNEIN; INTRACELLULAR-TRANSPORT; BIDIRECTIONAL TRANSPORT; ORGANELLE TRANSPORT; TRANSIENT BINDING; STEPPING BEHAVIOR; MOLECULAR MOTORS; CARGO TRANSPORT; KINESIN; MICROTUBULES;
D O I
10.1126/science.1226734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cytoplasmic dynein and kinesin-1 are microtubule-based motors with opposite polarity that transport a wide variety of cargo in eukaryotic cells. Many cellular cargos demonstrate bidirectional movement due to the presence of ensembles of dynein and kinesin, but are ultimately sorted with spatial and temporal precision. To investigate the mechanisms that coordinate motor ensemble behavior, we built a programmable synthetic cargo using three-dimensional DNA origami to which varying numbers of DNA oligonucleotide-linked motors could be attached, allowing for control of motor type, number, spacing, and orientation in vitro. In ensembles of one to seven identical-polarity motors, motor number had minimal affect on directional velocity, whereas ensembles of opposite-polarity motors engaged in a tug-of-war resolvable by disengaging one motor species.
引用
收藏
页码:662 / 665
页数:4
相关论文
共 24 条
  • [1] Tug-of-war in motor proteins and the emergence of Levy walk
    Moon, Kyungsun
    Moon, Hyungseok Chad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 515 : 65 - 71
  • [2] Controlling DNA Tug-of-War in a Dual Nanopore Device
    Liu, Xu
    Zhang, Yuning
    Nagel, Roland
    Reisner, Walter
    Dunbar, William B.
    SMALL, 2019, 15 (30)
  • [3] Engineering Defined Motor Ensembles with DNA Origami
    Goodman, Brian S.
    Reck-Peterson, Samara L.
    RECONSTITUTING THE CYTOSKELETON, 2014, 540 : 169 - 188
  • [4] Metabolic Tug-of-War between Glycolysis and Translation Revealed by Biochemical Reconstitution
    Sato, Gaku
    Kinoshita, Saki
    Yamada, Takahiro G.
    Arai, Satoshi
    Kitaguchi, Tetsuya
    Funahashi, Akira
    Doi, Nobuhide
    Fujiwara, Kei
    ACS SYNTHETIC BIOLOGY, 2024, 13 (05): : 1572 - 1581
  • [5] A Tug-of-War Mechanism Drives the Allosteric Activation of Protein Kinase A
    Bai, Lihui
    England, Jeneffer P.
    Maillard, Rodrigo A.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 170A - 170A
  • [6] Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport
    Hendricks, Adam G.
    Perlson, Eran
    Ross, Jennifer L.
    Schroeder, Harry W., III
    Tokito, Mariko
    Holzbaur, Erika L. F.
    CURRENT BIOLOGY, 2010, 20 (08) : 697 - 702
  • [7] Random intermittent search and the tug-of-war model of motor-driven transport
    Newby, Jay
    Bressloff, Paul C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [8] The Underlying Physiology of a Lipid Transfer Protein Tug-of-War in the Endosomal System
    Bankaitis, Vytas A.
    FASEB JOURNAL, 2011, 25
  • [9] Direct Observation of the Tug-Of-War During the Folding of a Mutually Exclusive Protein
    Peng, Qing
    Li, Hongbin
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 28A - 28A
  • [10] Direct Observation of Tug-of-War during the Folding of a Mutually Exclusive Protein
    Peng, Qing
    Li, Hongbin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (37) : 13347 - 13354