Some Multisecret-Sharing Schemes over Finite Fields

被引:0
|
作者
calkavur, Selda [1 ]
Sole, Patrick [2 ]
机构
[1] Kocaeli Univ, Kosekoy Vocat Sch, Math Dept, TR-41135 Kocaeli, Turkey
[2] Aix Marseille Univ, Cent Marseille, CNRS, I2M, 163 Ave Luminy, F-13009 Marseille, France
关键词
secret sharing; multisecret-sharing scheme; finite field; vector space;
D O I
10.3390/math8050654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A secret sharing scheme is a method of assigning shares for a secret to some participants such that only some distinguished subsets of these subsets can recover the secret while other subsets cannot. Such schemes can be used for sharing a private key, for digital signatures or sharing the key that can be used to decrypt the content of a file. There are many methods for secret sharing. One of them was developed by Blakley. In this work, we construct a multisecret-sharing scheme over finite fields. The reconstruction algorithm is based on Blakley's method. We determine the access structure and obtain a perfect and ideal scheme.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Constacyclic codes over finite fields
    Chen, Bocong
    Fan, Yun
    Lin, Liren
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1217 - 1231
  • [32] Consensus networks over finite fields
    Pasqualetti, Fabio
    Borra, Dornenica
    Bullo, Francesco
    AUTOMATICA, 2014, 50 (02) : 349 - 358
  • [33] Vanishing Ideals over Finite Fields
    A. Tochimani
    R. H. Villarreal
    Mathematical Notes, 2019, 105 : 429 - 438
  • [34] Vanishing Ideals over Finite Fields
    Tochimani, A.
    Villarreal, R. H.
    MATHEMATICAL NOTES, 2019, 105 (3-4) : 429 - 438
  • [35] On the equational graphs over finite fields
    Mans, Bernard
    Sha, Min
    Smith, Jeffrey
    Sutantyo, Daniel
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64
  • [36] Counting curves over finite fields
    van der Geer, Gerard
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 : 207 - 232
  • [37] Synchronous Networks Over Finite Fields
    Wang, Jin
    Feng, Jun-e
    Yu, Yongyuan
    Huang, Hua-Lin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6907 - 6912
  • [38] The Bessel function over finite fields
    Khekalo, S
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (03) : 241 - 253
  • [39] PERMUTATION BINOMIALS OVER FINITE FIELDS
    Masuda, Ariane M.
    Zieve, Michael E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) : 4169 - 4180
  • [40] On 1-isometries of affine quadrics over finite fields
    Eberhard M. Schröder
    Journal of Geometry, 1998, 61 (1-2) : 164 - 181