Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template

被引:128
作者
Yu, Shukai [1 ]
Wang, Haoran [1 ]
Hu, Chen [2 ]
Zhu, Qizhen [1 ]
Qiao, Ning [1 ]
Xu, Bin [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[2] China Elect Power Res Inst, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; MESOPOROUS CARBON; ELECTROCHEMICAL PERFORMANCE; MICROPOROUS CARBON; GRAPHITIC CARBON; ENERGY-STORAGE; KOH ACTIVATION; SUPERCAPACITORS; CAPACITANCE; NANOFIBERS;
D O I
10.1039/c6ta07047g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hierarchical porous carbons have recently attracted much attention due to their unique features in practical applications, but suffer from the complex and costly synthesis procedure. In this work, a simple but very effective method was proposed to synthesize nitrogen-doped, hierarchical porous carbons with a high surface area by one-step pyrolysis of nano-ZnO/gelatin composites. During pyrolysis, zinc oxide nanoparticles act as not only a hard template to create mesopores, but also an activating agent to create micropores as well as enlarge the pore sizes of the mesopores, making the carbon possess a developed hierarchical porous structure with a high BET surface area of 2412 m(2) g(-1) and a large pore volume of 3.436 cm(3) g(-1). The activation effect of nano-ZnO was investigated by thermogravimetric analysis, carbon yield, nitrogen adsorption-desorption measurements, SEM, TEM and so on. The pyrolysis temperature has an important influence on the properties of the carbon materials. Both the BET surface area and pore volume increase dramatically with the pyrolysis temperature. Being used as an electrode material for supercapacitors, the developed hierarchical porous structure endows the carbon with superior rate capability.
引用
收藏
页码:16341 / 16348
页数:8
相关论文
共 52 条
[1]   The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template [J].
Ania, Conchi O. ;
Khomenko, Volodymyr ;
Raymundo-Pinero, Encarnacion ;
Parra, Jose B. ;
Beguin, Francois .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (11) :1828-1836
[2]   The effect of the activating agent and temperature on the porosity development of physically activated coal chars [J].
Arenas, E ;
Chejne, F .
CARBON, 2004, 42 (12-13) :2451-2455
[3]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[4]   Nitrogen modification of highly porous carbon for improved supercapacitor performance [J].
Candelaria, Stephanie L. ;
Garcia, Betzaida B. ;
Liu, Dawei ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9884-9889
[5]   Preparation of activated carbon from cotton stalk and its application in supercapacitor [J].
Chen, Mingde ;
Kang, Xueya ;
Wumaier, Tuerdi ;
Dou, Junqing ;
Gao, Bo ;
Han, Ying ;
Xu, Guoqing ;
Liu, Zhiqiang ;
Zhang, Lu .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (04) :1005-1012
[6]   High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles [J].
Chen, Zheng ;
Wen, Jing ;
Yan, Chunzhu ;
Rice, Lynn ;
Sohn, Hiesang ;
Shen, Meiqing ;
Cai, Mei ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :551-556
[7]   Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage [J].
Cheng, Ping ;
Gao, Shuangyan ;
Zang, Peiyu ;
Yang, Xiaofan ;
Bai, Yonglong ;
Xu, Hua ;
Liu, Zonghuai ;
Lei, Zhibin .
CARBON, 2015, 93 :315-324
[8]   Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors [J].
Choi, Bong Gill ;
Hong, Jinkee ;
Hong, Won Hi ;
Hammond, Paula T. ;
Park, HoSeok .
ACS NANO, 2011, 5 (09) :7205-7213
[9]   Synthesis of ordered micro-mesoporous carbons by activation of SBA-15 carbon replicas [J].
Enterria, M. ;
Suarez-Garcia, F. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 151 :390-396
[10]   Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell [J].
Fang, Baizeng ;
Kim, Jung Ho ;
Kim, Minsik ;
Yu, Jong-Sung .
CHEMISTRY OF MATERIALS, 2009, 21 (05) :789-796