Computational Approaches to the Chemical Conversion of Carbon Dioxide

被引:157
作者
Cheng, Daojian [1 ]
Negreiros, Fabio R. [2 ]
Apra, Edoardo [3 ]
Fortunelli, Alessandro [2 ]
机构
[1] Beijing Univ Chem Technol, Div Mol & Mat Simulat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] CNR, IPCF, I-56124 Pisa, Italy
[3] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab Battelle, Richland, WA 99352 USA
基金
中国国家自然科学基金; 欧洲研究理事会;
关键词
catalysts; density functional theory; hydrogenation; reaction mechanisms; reduction; WATER-GAS-SHIFT; DENSITY-FUNCTIONAL THEORY; CATALYZED ELECTROCHEMICAL REDUCTION; TRANSITION-METAL CATALYSTS; CO2; HYDROGENATION; METHANOL SYNTHESIS; REACTION-MECHANISM; FORMIC-ACID; PHOTOCATALYTIC CONVERSION; RUTHENIUM(II)-CATALYZED HYDROGENATION;
D O I
10.1002/cssc.201200872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of CO2 into fuels and chemicals is viewed as an attractive route for controlling the atmospheric concentration and recycling of this greenhouse gas, but its industrial application is limited by the low selectivity and activity of the current catalysts. Theoretical modeling, in particular density functional theory (DFT) simulations, provides a powerful and effective tool to discover chemical reaction mechanisms and design new catalysts for the chemical conversion of CO2, overcoming the repetitious and time/labor consuming trial-and-error experimental processes. In this article we give a comprehensive survey of recent advances on mechanism determination by DFT calculations for the catalytic hydrogenation of CO2 into CO, CH4, CH3OH, and HCOOH, and CO2 methanation, as well as the photo- and electrochemical reduction of CO2. DFT-guided design procedures of new catalytic systems are also reviewed, and challenges and perspectives in this field are outlined.
引用
收藏
页码:944 / 965
页数:22
相关论文
共 219 条
[121]   A VARIABLE PRESSURE TEMPERATURE SCANNING TUNNELING MICROSCOPE FOR SURFACE SCIENCE AND CATALYSIS STUDIES [J].
MCINTYRE, BJ ;
SALMERON, M ;
SOMORJAI, GA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (03) :687-691
[122]   GLOBAL CLIMATE-CHANGE AND TERRESTRIAL NET PRIMARY PRODUCTION [J].
MELILLO, JM ;
MCGUIRE, AD ;
KICKLIGHTER, DW ;
MOORE, B ;
VOROSMARTY, CJ ;
SCHLOSS, AL .
NATURE, 1993, 363 (6426) :234-240
[123]   Optimization of bimetallic dry reforming catalysts by temperature programmed reaction [J].
Menegazzo, F. ;
Signoretto, M. ;
Pinna, F. ;
Canton, P. ;
Pernicone, N. .
APPLIED CATALYSIS A-GENERAL, 2012, 439 :80-87
[124]  
MEUNIER FC, 2011, ANGEW CHEM, V123, P4139
[125]   Hierarchical, multiscale surface reaction mechanism development:: CO and H2 oxidation, water-gas shift, and preferential oxidation of CO on Rh [J].
Mhadeshwar, AB ;
Vlachos, DG .
JOURNAL OF CATALYSIS, 2005, 234 (01) :48-63
[126]   The teraton challenge. A review of fixation and transformation of carbon dioxide [J].
Mikkelsen, Mette ;
Jorgensen, Mikkel ;
Krebs, Frederik C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (01) :43-81
[127]   Nano-Particles in Heterogeneous Catalysis [J].
Molenbroek, Alfons M. ;
Helveg, Stig ;
Topsoe, Henrik ;
Clausen, Bjerne S. .
TOPICS IN CATALYSIS, 2009, 52 (10) :1303-1311
[128]   CO Oxidation by Subnanometer AgxAu3-x Supported Clusters via Density Functional Theory Simulations [J].
Negreiros, F. R. ;
Sementa, L. ;
Barcaro, G. ;
Vajda, S. ;
Apra, E. ;
Fortunelli, A. .
ACS CATALYSIS, 2012, 2 (09) :1860-1864
[129]   A first-principles theoretical approach to heterogeneous nanocatalysis [J].
Negreiros, Fabio R. ;
Apra, Edoardo ;
Barcaro, Giovanni ;
Sementa, Luca ;
Vajda, Stefan ;
Fortunelli, Alessandro .
NANOSCALE, 2012, 4 (04) :1208-1219
[130]   Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 1. A Density Functional Study of Intermediates [J].
Nielsen, Ida M. B. ;
Leung, Kevin .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (37) :10166-10173