ELEPHANT RANDOM WALKS WITH DELAYS

被引:0
|
作者
Gut, Allan [1 ]
Stadtmueller, Ulrich [2 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, SE-75106 Uppsala, Sweden
[2] Ulm Univ, Dept Number Theory & Probabil Theory, D-89069 Ulm, Germany
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 1-2期
关键词
Elephant random walk; delay; law of large numbers; asymptotic (non)normality; law of iterated logarithm; difference equation; Markov chain;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the simple random walk the steps are independent, that is., the walker has no memory. In contrast, in the elephant random walk (ERW), which was introduced by Schutz and Trimper [9] in 2004, the next step always depends on the whole path so far. One extension, as suggested recently by Bercu et al. [2], is to allow for delays, that is, to put mass at zero. Our aim is to extend results for the ordinary ERW to elephant random walks with delays (ERWD).
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [21] Random walks and random permutations
    Forrester, PJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : L417 - L423
  • [22] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [23] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    NANO-NET, 2009, 3 : 95 - +
  • [24] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01): : 456 - 490
  • [25] Random walks in a random environment
    S. R. S. Varadhan
    Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [26] How random are random walks?
    Blei, R
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [27] Dynamic Network Embeddings: From Random Walks to Temporal Random Walks
    Nguyen, Giang H.
    Lee, John Boaz
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Koh, Eunyee
    Kim, Sungchul
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1085 - 1092
  • [28] SHAPE ASYMMETRY OF RANDOM-WALKS AND NONREVERSAL RANDOM-WALKS
    ZIFFERER, G
    OLAJ, OF
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (01): : 636 - 639
  • [29] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [30] RANDOM-WALKS ON RANDOM TREES
    MOON, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &