Crow search algorithm for solving optimal power flow problem
被引:0
作者:
Saha, Anulekha
论文数: 0引用数: 0
h-index: 0
机构:
NIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, IndiaNIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, India
Saha, Anulekha
[1
]
Bhattacharya, Aniruddha
论文数: 0引用数: 0
h-index: 0
机构:
NIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, IndiaNIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, India
Bhattacharya, Aniruddha
[1
]
Das, Priyanath
论文数: 0引用数: 0
h-index: 0
机构:
NIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, IndiaNIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, India
Das, Priyanath
[1
]
Chakraborty, Ajoy Kumar
论文数: 0引用数: 0
h-index: 0
机构:
NIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, IndiaNIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, India
Chakraborty, Ajoy Kumar
[1
]
机构:
[1] NIT Agartala, Dept Elect Engn, West Tripura 799055, Tripura, India
来源:
PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT)
|
2017年
关键词:
CSA;
cost minimization;
loss minimization;
optimal power flow;
BIOGEOGRAPHY-BASED OPTIMIZATION;
D O I:
暂无
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
A new evolutionary optimization technique, crow search algorithm (CSA) is proposed in this paper for solving the optimal power flow (OPF) problem. The algorithm has been implemented on IEEE 30 bus test system to check its effectiveness in solving the OPF problem after satisfying various operational constraints. A comparative study of the results is presented in this paper. Analysis of the results reveals that the algorithm is effective in producing superior results for the