The odd moments of ranks and cranks

被引:42
作者
Andrews, George E. [1 ]
Chan, Song Heng [2 ]
Kim, Byungchan [3 ,4 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[3] Seoul Natl Univ Sci & Technol, Sch Liberal Arts, Seoul 139743, South Korea
[4] Seoul Natl Univ Sci & Technol, Inst Convergence Fundamental Studies, Seoul 139743, South Korea
基金
新加坡国家研究基金会;
关键词
Partitions; Rank; Crank; Rank moments; Crank moments; Smallest part function; Strings;
D O I
10.1016/j.jcta.2012.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we modify the standard definition of moments of ranks and cranks such that odd moments no longer trivially vanish. Denoting the new k-th rank (resp. crank) moments by (N) over bar (k)(n) (resp. (M) over bar (k)(n)), we prove the following inequality between the first rank and crank moments: (M) over bar (1)(n) > (N) over bar (1)(n). This inequality motivates us to study a new counting function, ospt(n), which is equal to (M) over bar (1)(n) - (N) over bar (1)(n). We also discuss higher order moments of ranks and cranks. Surprisingly, for every higher order moments of ranks and cranks, the following inequality holds: (M) over bar (k)(n) > (N) over bar (k)(n). This extends F.G. Garvan's result on the ordinary moments of ranks and cranks. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 13 条
[1]  
Andrews G. E., PREPRINT
[2]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[3]  
[Anonymous], RAMANUJAN J IN PRESS
[4]   Relations between the ranks and cranks of partitions [J].
Atkin, AOL ;
Garvan, FG .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :343-366
[5]   Cranks and dissections in Ramanujan's lost notebook [J].
Berndt, BC ;
Chan, HH ;
Chan, SH ;
Liaw, WC .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (01) :91-120
[6]   Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions [J].
Berndt, Bruce C. ;
Kim, Byungchan ;
Yee, Ae Ja .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) :957-973
[7]  
Bringmann K., PREPRINT
[8]  
Dyson F.J., PREPRINT
[9]  
Dyson F.J., 1944, EUREKA CAMBRIDGE, V8, P15
[10]  
Foata D, 2010, LEGACY OF ALLADI RAMAKRISHNAN IN THE MATHEMATICAL SCIENCES, P253, DOI 10.1007/978-1-4419-6263-8_15