Stability classes of second-order linear recurrences modulo 2k

被引:0
作者
Carlip, W [1 ]
Somer, L [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27705 USA
来源
NUMBER THEORY | 2000年 / 20卷
关键词
Lucas; Fibonacci; distribution; stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the 2(k)-blocks of second-order recurrence sequences with parameter b equivalent to 3 (mod 4) and identify stability classes modulo 2.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 10 条
[1]  
Carlip W, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P691
[2]  
Carlip W, 1996, FIBONACCI QUART, V34, P298
[3]  
Carlip W, 1996, ACTA ARITH, V74, P329
[4]  
CARLIP W, 1998, APPL FIBONACCI NUMBE, V7, P49
[5]  
Carlip W, 1996, FINITE FIELDS APPL, V2, P369
[6]  
Carlip W., 1997, FINITE FIELDS APPL, V3, P70, DOI [10.1006/ffta.1996.0164, DOI 10.1006/FFTA.1996.0164]
[7]  
CARROLL D, 1994, FIBONACCI QUART, V32, P260
[8]  
JACOBSON ET, 1992, FIBONACCI QUART, V30, P211
[9]  
Morgan K, 1983, Arch Gerontol Geriatr, V2, P181, DOI 10.1016/0167-4943(83)90022-5
[10]  
Somer L., 2000, INT J MATH MATH SCI, V23, P225