A Conservative Semi-Lagrangian Method for the Advection Problem

被引:1
作者
Efremov, Alexandr [1 ]
Karepova, Evgeniya [1 ,2 ]
Shaidurov, Vladimir [1 ]
机构
[1] Inst Computat Modelling SB RAS Akademgorodok, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, IM&CS, Krasnoyarsk, Russia
来源
NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016) | 2017年 / 10187卷
关键词
Semi-lagrangian approach; Advection equation; Hyperbolic conservation law;
D O I
10.1007/978-3-319-57099-0_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the paper, a new discrete analogue of an initial-boundary value problem is presented for the two-dimensional advection equation arising from a scalar time-dependent hyperbolic conservation law. At each time level, an approximate solution is found as a bilinear function on a uniform rectangular grid. For the presented scheme, a discrete analogue of the local integral balance equation is valid between two neighboring time levels. The numerical experiments are discussed for a solution with strong gradients.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 9 条
[1]  
Anderson JD., 1995, Computational Fluid Dynamics
[2]   Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations [J].
Dupont, Todd F. ;
Liu, Yingjie .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :647-668
[3]   Some Features of the CUDA Implementation of the Semi-Lagrangian Method for the Advection Problem [J].
Efremov, A. ;
Karepova, E. ;
Vyatkin, A. .
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15), 2015, 1684
[4]  
Efremov A., 2014, J APPL MATH, V2014
[5]  
Griebel M., 1998, Numerical simulation in fluid dynamics: a practical introduction
[6]   An unconditionally stable fully conservative semi-Lagrangian method [J].
Lentine, Michael ;
Gretarsson, Jon Tomas ;
Fedkiw, Ronald .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) :2857-2879
[7]  
Morton K. M., 1996, NUMERICAL SOLUTION C
[8]   An unconditionally stable MacCormack method [J].
Selle, Andrew ;
Fedkiw, Ronald ;
Kim, ByungMoon ;
Liu, Yingjie ;
Rossignac, Jarek .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (2-3) :350-371
[9]   Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE) [J].
Zerroukat, M. ;
Wood, N. ;
Staniforth, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :935-948