Multilinear operator-valued Calderon-Zygmund theory

被引:9
作者
Di Plinio, Francesco [1 ]
Li, Kangwei [2 ,3 ]
Martikainen, Henri [4 ]
Vuorinen, Emil [4 ,5 ]
机构
[1] Washington Univ, Dept Math, One Brookings Dr, St Louis, MO 63130 USA
[2] Tianjin Univ, Ctr Appl Math, Weijin Rd 92, Tianjin 300072, Peoples R China
[3] BCAM Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
[4] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
[5] Lund Univ, Ctr Math Sci, POB 118, S-22100 Lund, Sweden
基金
芬兰科学院; 美国国家科学基金会;
关键词
Calderon-Zygmund operators; Operator-valued analysis; Multilinear analysis; UMD spaces; SINGULAR-INTEGRALS; HILBERT TRANSFORM; DYADIC SHIFTS; EXTRAPOLATION; DOMINATION; INEQUALITY; SPACES;
D O I
10.1016/j.jfa.2020.108666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a general theory of multilinear singular integrals with operator-valued kernels, acting on tuples of UMD Banach spaces. This, in particular, involves investigating multilinear variants of the R-boundedness condition naturally arising in operator-valued theory. We proceed by establishing a suitable representation of multilinear, operator-valued singular integrals in terms of operator-valued dyadic shifts and paraproducts, and studying the boundedness of these model operators via dyadic-probabilistic Banach space-valued analysis. In the bilinear case, we obtain a T(1)-type theorem without any additional assumptions on the Banach spaces other than the necessary UMD. Higher degrees of multilinearity are tackled via a new formulation of the Rademacher maximal function (RMF) condition. In addition to the natural UMD lattice cases, our RMF condition covers suitable tuples of non-commutative L-P spaces. We employ our operator-valued theory to obtain new multilinear, multi-parameter, operator-valued theorems in the natural setting of UMD spaces with property alpha. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:62
相关论文
共 46 条
  • [1] [Anonymous], 2017, SERIES MODERN SURVEY, V67
  • [2] [Anonymous], 2019, P LOND MATH SOC, DOI DOI 10.1112/PLMS.12279
  • [3] [Anonymous], 2016, SERIES MODERN SURVEY, V63
  • [4] SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL
    BOURGAIN, J
    [J]. ARKIV FOR MATEMATIK, 1983, 21 (02): : 163 - 168
  • [5] Burkholder Donald L., 1983, WADSWORTH MATH SER, VI, P270
  • [6] Burkholder Donald L., 1983, WADSWORTH MATH SER, VI, P270
  • [7] Bounds for partial derivatives: necessity of UMD and sharp constants
    Castro, Alejandro J.
    Hytonen, Tuomas P.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 635 - 650
  • [8] POLYNOMIAL-GROWTH ESTIMATES FOR MULTILINEAR SINGULAR INTEGRAL-OPERATORS
    CHRIST, M
    JOURNE, JL
    [J]. ACTA MATHEMATICA, 1987, 159 (1-2) : 51 - 80
  • [9] Coifman R., 1978, ASTERISQUE, V57
  • [10] Domination of multilinear singular integrals by positive sparse forms
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 369 - 392