A Spatial Diffusion Strategy for Tap-Length Estimation Over Adaptive Networks

被引:5
作者
Zhang, Yonggang [1 ]
Wang, Chengcheng [1 ]
Zhao, Lin [1 ]
Chambers, Jonathon A. [2 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
[2] Newcastle Univ, Sch Elect & Elect Engn, ComS2IP Grp, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Adaptive networks; diffusion algorithm; distributed estimation; variable tap-length algorithm; LEAST-MEAN SQUARES; LMS ALGORITHM; DISTRIBUTED NETWORKS; PERFORMANCE ANALYSIS; ADAPTATION; OPTIMIZATION; FORMULATION;
D O I
10.1109/TSP.2015.2440182
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the distributed estimation problem, where a set of nodes is required to collectively estimate some parameter vector of interest with unknown or variable tap-length. In practice, a sufficiently large filter length is utilized in such contexts to avoid a large excess mean square error at steady state, thereby resulting in slower convergence rate and increased computations. In this work we motivate and propose a new diffusion-based variable tap-length algorithm, which is able to track tap-length changes during the convergence process. Theoretical analyses are provided in terms of steady-state performance and convergence performance, which are verified by simulation results. Some general criteria for parameter selections are also given according to the performance analyses. Numerical simulations demonstrate the efficiency of the proposed algorithm as compared with existing techniques, and robustness to parameter settings provided the parameter choice guidelines are satisfied.
引用
收藏
页码:4487 / 4501
页数:15
相关论文
共 31 条
  • [1] [Anonymous], 2002, Adaptive Filter Theory
  • [2] [Anonymous], 2003, Fundamentals of Adaptive Filtering
  • [3] A new class of incremental gradient methods for least squares problems
    Bertsekas, DP
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) : 913 - 926
  • [4] Diffusion recursive least-squares for distributed estimation over adaptive networks
    Cattivelli, Federico S.
    Lopes, Cassio G.
    Sayed, Ali. H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (05) : 1865 - 1877
  • [5] Diffusion Strategies for Distributed Kalman Filtering and Smoothing
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) : 2069 - 2084
  • [6] Diffusion LMS Strategies for Distributed Estimation
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1035 - 1048
  • [7] Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks
    Chen, Jianshu
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4289 - 4305
  • [8] Adaptive Robust Distributed Learning in Diffusion Sensor Networks
    Chouvardas, Symeon
    Slavakis, Konstantinos
    Theodoridis, Sergios
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (10) : 4692 - 4707
  • [9] An LMS style variable tap-length algorithm for structure adaptation
    Gong, Y
    Cowan, CFN
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2400 - 2407
  • [10] LMS algorithm with gradient descent filter length
    Gu, YT
    Tang, K
    Cui, HJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (03) : 305 - 307