A subspace theorem for subvarieties

被引:20
作者
Ru, Min [1 ,2 ]
Wang, Julie Tzu-Yueh [1 ,3 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Acad Sinica, Inst Math, Taipei, Taiwan
关键词
Schmidt's subspace theorem; Roth's theorem; Diophantine approximation; Vojta's conjecture;
D O I
10.2140/ant.2017.11.2323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a height inequality, in terms of an (ample) line bundle, for a sum of subschemes located in l-subgeneral position in an algebraic variety, which extends a result of McKinnon and Roth (2015). The inequality obtained in this paper connects the result of McKinnon and Roth (the case when the subschemes are points) and the results of Corvaja and Zannier (2004), Evertse and Ferretti (2008), Ru (2017), and Ru and Vojta (2016) (the case when the subschemes are divisors). Furthermore, our approach gives an alternative short and simpler proof of McKinnon and Roth's result.
引用
收藏
页码:2323 / 2337
页数:15
相关论文
共 17 条
[1]  
Autissier P, 2009, ANN SCI ECOLE NORM S, V42, P221
[2]   The degenerated second main theorem and Schmidt's subspace theorem [J].
Chen ZhiHua ;
Ru Min ;
Yan QiMing .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1367-1380
[3]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[4]   On a general Thue's equation (vol 128, pg 1057, 2006) [J].
Corvaja, Pietro ;
Zannier, Umberto .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (04) :1057-1066
[5]   A generalization of the Subspace Theorem with polynomials of higher degree [J].
Evertse, Jan-Hendrik ;
Ferretti, Roberto G. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :175-+
[6]  
Evertse JH, 2002, INT MATH RES NOTICES, V2002, P1295
[7]  
Hindry M., 2000, GRAD TEXT M, V201
[8]  
Hussein S., 2018, ASIAN J MAT IN PRESS
[9]  
Lang S., 1983, Fundamentals of Diophantine geometry, DOI 10.1007/978-1-4757-1810-2
[10]   ON THE SCHMIDT SUBSPACE THEOREM FOR ALGEBRAIC POINTS [J].
Levin, Aaron .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (15) :2841-2885