Routh's sphere

被引:22
|
作者
Cushman, R [1 ]
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1016/S0034-4877(98)80004-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show that the integral map of Routh's sphere has monodromy when the sphere becomes gyroscopically unstable. This uses the non-Hamiltonian monodromy theorem.
引用
收藏
页码:47 / 70
页数:24
相关论文
共 50 条
  • [1] On the Routh sphere problem
    Bizyaev, I. A.
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (08)
  • [2] On the Nonholonomic Routh Sphere in a Magnetic Field
    Alexey V. Borisov
    Andrey V. Tsiganov
    Regular and Chaotic Dynamics, 2020, 25 : 18 - 32
  • [3] On the Nonholonomic Routh Sphere in a Magnetic Field
    Borisov, Alexey V.
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (01): : 18 - 32
  • [4] ROUTH'S THEOREM
    Shephard, Geoffrey C.
    SYMMETRY-CULTURE AND SCIENCE, 2011, 22 (3-4): : 459 - 475
  • [5] Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball
    Miguel D. Bustamante
    Peter Lynch
    Regular and Chaotic Dynamics, 2019, 24 : 511 - 524
  • [6] Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball
    Bustamante, Miguel D.
    Lynch, Peter
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (05): : 511 - 524
  • [7] Routh's theorem for tetrahedra
    Litvinov, Semyon
    Marko, Frantisek
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 155 - 167
  • [8] Routh’s theorem for tetrahedra
    Semyon Litvinov
    František Marko
    Geometriae Dedicata, 2015, 174 : 155 - 167
  • [9] A Generalization of Routh's Triangle Theorem
    Benyi, Arpad
    Curgus, Branko
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (09): : 841 - 846
  • [10] Routh's equations and variational principles
    Rumyantsev, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (04): : 543 - 551