CRISPR-Directed Microbiome Manipulation across the Food Supply Chain

被引:24
作者
Barrangou, Rodolphe [1 ,2 ]
Notebaart, Richard A. [3 ]
机构
[1] NC State Univ, Genom Sci Program, Raleigh, NC 27695 USA
[2] NC State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA
[3] Wageningen Univ & Res, Food Microbiol, Wageningen, Netherlands
关键词
BACTERIOPHAGE; RESISTANCE;
D O I
10.1016/j.tim.2019.03.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The advent of CRISPR-based technologies has revolutionized genetics over the past decade, and genome editing is now widely implemented for diverse medical and agricultural applications, such as correcting genetic disorders and improving crop and livestock breeding. CRISPR-based technologies are also of great potential to alter the genetic content of food bacteria in order to control the composition and activity of microbial populations across the food supply chain, from the farm to consumer products. Advancing the food supply chain is of great societal importance as it involves optimizing fermentation processes to enhance taste and sensory properties of food products, as well as improving food quality and safety by controlling spoilage bacteria and pathogens. Here, we discuss the various CRISPR technologies that can alter bacterial functionalities and modulate the composition of microbial communities in foods. We illustrate how these applications can be harnessed along the food supply chain to manipulate microbiomes that encompass spoilage and pathogenic bacteria as well as desirable starter cultures and health-promoting probiotics.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 28 条
[11]   Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems [J].
Gomaa, Ahmed A. ;
Klumpe, Heidi E. ;
Luo, Michelle L. ;
Selle, Kurt ;
Barrangou, Rodolphe ;
Beisel, Chase L. .
MBIO, 2014, 5 (01)
[12]   Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry [J].
Gutierrez, Diana ;
Rodriguez-Rubio, Lorena ;
Martinez, Beatriz ;
Rodriguez, Ana ;
Garcia, Pilar .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[13]   Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations [J].
Hagens, Steven ;
Loessner, Martin J. .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2010, 11 (01) :58-68
[14]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[15]   CRISPR-Cas guides the future of genetic engineering [J].
Knott, Gavin J. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 361 (6405) :866-869
[16]   Enabling the Rise of a CRISPR World [J].
LaManna, Caroline M. ;
Barrangou, Rodolphe .
CRISPR JOURNAL, 2018, 1 (03) :205-208
[17]   Rapid improvement of domestication traits in an orphan crop by genome editing [J].
Lemmon, Zachary H. ;
Reem, Nathan T. ;
Dalrymple, Justin ;
Soyk, Sebastian ;
Swartwood, Kerry E. ;
Rodriguez-Leal, Daniel ;
Van Eck, Joyce ;
Lippman, Zachary B. .
NATURE PLANTS, 2018, 4 (10) :766-770
[18]   RNA-Guided Human Genome Engineering via Cas9 [J].
Mali, Prashant ;
Yang, Luhan ;
Esvelt, Kevin M. ;
Aach, John ;
Guell, Marc ;
DiCarlo, James E. ;
Norville, Julie E. ;
Church, George M. .
SCIENCE, 2013, 339 (6121) :823-826
[19]   CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA [J].
Marraffini, Luciano A. ;
Sontheimer, Erik J. .
SCIENCE, 2008, 322 (5909) :1843-1845
[20]   Accelerating the reconstruction of genome-scale metabolic networks [J].
Notebaart, Richard A. ;
Van Enckevort, Frank H. J. ;
Francke, Christof ;
Siezen, Roland J. ;
Teusink, Bas .
BMC BIOINFORMATICS, 2006, 7 (1)