Cell Shape and Durotaxis Explained from Cell-Extracellular Matrix Forces and Focal Adhesion Dynamics

被引:68
作者
Rens, Elisabeth G. [1 ,2 ,4 ]
Merks, Roeland M. H. [1 ,3 ,5 ]
机构
[1] CWI, Sci Comp, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Univ British Columbia, Math Dept, Math Rd 1984, Vancouver, BC V6T 1Z2, Canada
[3] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
[4] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[5] Leiden Univ, Inst Biol, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
基金
加拿大自然科学与工程研究理事会; 荷兰研究理事会;
关键词
SUBSTRATE STIFFNESS; ACTIN CYTOSKELETON; INTEGRIN ACTIVATION; MODEL; RIGIDITY; MECHANICS; TRACTION; CONTRACTILITY; MOTILITY; ORGANIZATION;
D O I
10.1016/j.isci.2020.101488
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many cells are small and rounded on soft extracellular matrices (ECM), elongated on stiffer ECMs, and flattened on hard ECMs. Cells also migrate up stiffness gradients (durotaxis). Using a hybrid cellular Potts and finite-element model extended with ODE-based models of focal adhesion (FA) turnover, we show that the full range of cell shape and durotaxis can be explained in unison from dynamics of FAs, in contrast to previous mathematical models. In our 2D cell-shape model, FAs grow due to cell traction forces. Forces develop faster on stiff ECMs, causing FAs to stabilize and, consequently, cells to spread on stiff ECMs. If ECM stress further stabilizes FAs, cells elongate on substrates of intermediate stiffness. We show that durotaxis follows from the same set of assumptions. Our model contributes to the understanding of the basic responses of cells to ECM stiffness, paving the way for future modeling of more complex cell-ECM interactions.
引用
收藏
页数:34
相关论文
共 113 条
[1]   Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model [J].
Albert, Philipp J. ;
Schwarz, Ulrich S. .
BIOPHYSICAL JOURNAL, 2014, 106 (11) :2340-2352
[2]   Cooperativity between Integrin Activation and Mechanical Stress Leads to Integrin Clustering [J].
Ali, O. ;
Guillou, H. ;
Destaing, O. ;
Albiges-Rizo, C. ;
Block, M. R. ;
Fourcade, B. .
BIOPHYSICAL JOURNAL, 2011, 100 (11) :2595-2604
[3]   A Cellular Potts Model of single cell migration in presence of durotaxis [J].
Allena, R. ;
Scianna, M. ;
Preziosi, L. .
MATHEMATICAL BIOSCIENCES, 2016, 275 :57-70
[4]   Cellular traction as an inverse problem [J].
Ambrosi, D. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (06) :2049-2060
[5]  
[Anonymous], 2011, The Finite Element Method: An Introduction with Partial Differential Equations
[6]  
Asano S, 2017, PHYSIOL REP, V5, DOI 10.14814/phy2.13281
[7]   Mechanical link between durotaxis, cell polarity and anisotropy during cell migration [J].
Aubry, D. ;
Gupta, M. ;
Ladoux, B. ;
Allena, R. .
PHYSICAL BIOLOGY, 2015, 12 (02)
[8]   The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions [J].
Balcioglu, Hayri E. ;
van Hoorn, Hedde ;
Donato, Dominique M. ;
Schmidt, Thomas ;
Danen, Erik H. J. .
JOURNAL OF CELL SCIENCE, 2015, 128 (07) :1316-1326
[9]   Shifting the optimal stiffness for cell migration [J].
Bangasser, Benjamin L. ;
Shamsan, Ghaidan A. ;
Chan, Clarence E. ;
Opoku, Kwaku N. ;
Tuzel, Erkan ;
Schlichtmann, Benjamin W. ;
Kasim, Jesse A. ;
Fuller, Benjamin J. ;
McCullough, Brannon R. ;
Rosenfeld, Steven S. ;
Odde, David J. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Quantification of the expression level of integrin receptor αVβ3 in cell lines and MR imaging with antibody-coated iron oxide particles [J].
Benedetto, Sabrina ;
Pulito, Roberta ;
Crich, Simonetta Geninatti ;
Tarone, Guido ;
Aime, Silvio ;
Silengo, Lorenzo ;
Hamm, Jorg .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (04) :711-716