Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble

被引:4
作者
Choup, Leonard N. [1 ]
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
关键词
eigenvalues and eigenfunctions; functional analysis; Gaussian processes; matrix algebra; probability; random processes; SPACING DISTRIBUTIONS;
D O I
10.1063/1.3046561
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we focus on the large n probability distribution function of the largest eigenvalue in the Gaussian orthogonal ensemble of nxn matrices (GOE(n)). We prove an Edgeworth-type theorem for the largest eigenvalue probability distribution function of GOE(n). The correction terms to the limiting probability distribution are expressed in terms of the same Painleve II functions appearing in the Tracy-Widom distribution. We conclude with a brief discussion of the GSE(n) case.
引用
收藏
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 2000, Courant Lecture Notes
[2]  
[Anonymous], 1990, CLASSES LINEAR OPERA
[3]  
[Anonymous], 2002, Proceedings of the International Congress of Mathematicians
[4]  
[Anonymous], INT C MATH
[5]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[6]   Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited [J].
Choup, Leonard N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
[7]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications
[8]  
Gohberg I., 1993, CLASSES LINEAR OPERA, V63
[9]  
Gohberg I.C., 1969, TRANSLATIONS MATH MO, V18
[10]   On the distribution of the largest eigenvalue in principal components analysis [J].
Johnstone, IM .
ANNALS OF STATISTICS, 2001, 29 (02) :295-327