A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design

被引:58
作者
Conchuir, Shane O. [1 ,2 ]
Barlow, Kyle A. [3 ]
Pache, Roland A. [1 ,2 ]
Ollikainen, Noah [3 ]
Kundert, Kale [4 ]
O'Meara, Matthew J. [5 ]
Smith, Colin A. [1 ,2 ,3 ]
Kortemme, Tanja [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif San Francisco, Calif Inst Quantitat Biosci QB3, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Grad Program Bioinformat, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Grad Program Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN-PROTEIN DOCKING; STRUCTURE PREDICTION; BINDING-ENERGY; HOT-SPOTS; SIMULATION; INFORMATION; STABILITY; EVOLUTION; DATABASE; DENSITY;
D O I
10.1371/journal.pone.0130433
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols inmacromolecularmodeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational samplingmethods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The capturesmay be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of currentmethods as they become available.
引用
收藏
页数:18
相关论文
共 52 条
[1]  
[Anonymous], GREAT WIN32 COMPUTER
[2]  
Bagley D., 2004, The Computer Language Benchmarks Game
[3]   Predicting free energy changes using structural ensembles [J].
Benedix, Alexander ;
Becker, Caroline M. ;
de Groot, Bert L. ;
Caflisch, Amedeo ;
Boeckmann, Rainer A. .
NATURE METHODS, 2009, 6 (01) :3-4
[4]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[7]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[8]   Cyclic coordinate descent: A robotics algorithm for protein loop closure [J].
Canutescu, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (05) :963-972
[9]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[10]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386