Structure finding in cosmological simulations: the state of affairs

被引:155
作者
Knebe, Alexander [1 ]
Pearce, Frazer R. [2 ]
Lux, Hanni [2 ,3 ]
Ascasibar, Yago [1 ]
Behroozi, Peter [4 ,5 ,6 ]
Casado, Javier [1 ]
Moran, Christine Corbett [7 ]
Diemand, Juerg [7 ]
Dolag, Klaus [8 ,9 ]
Dominguez-Tenreiro, Rosa [1 ]
Elahi, Pascal [2 ,10 ]
Falck, Bridget [11 ]
Gottloeber, Stefan [12 ]
Han, Jiaxin [10 ,13 ,14 ]
Klypin, Anatoly [15 ]
Lukic, Zarija [16 ,17 ]
Maciejewski, Michal [8 ]
McBride, Cameron K. [18 ,19 ]
Merchan, Manuel E. [20 ]
Muldrew, Stuart I. [2 ]
Neyrinck, Mark [21 ]
Onions, Julian [2 ]
Planelles, Susana [22 ,23 ]
Potter, Doug [7 ]
Quilis, Vicent [24 ]
Rasera, Yann [25 ]
Ricker, Paul M. [26 ,27 ]
Roy, Fabrice [25 ]
Ruiz, Andres N. [20 ]
Sgro, Mario A. [20 ]
Springel, Volker [28 ,29 ]
Stadel, Joachim [7 ]
Sutter, P. M. [26 ,27 ,30 ,31 ,32 ]
Tweed, Dylan [33 ]
Zemp, Marcel [34 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain
[2] Univ Nottingham, Sch Phys Astron, Nottingham NG7 2RD, England
[3] Univ Oxford, Dept Phys, Oxford OX1 3RH, England
[4] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[7] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
[8] Max Planck Inst Astrophys, D-85741 Garching, Germany
[9] Univ Observ Munchen, D-81679 Munich, Germany
[10] Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China
[11] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
[12] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany
[13] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[14] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England
[15] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA
[16] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94610 USA
[17] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
[18] Vanderbilt Univ, Stevenson Ctr 6301, Dept Phys & Astron, Nashville, TN 37235 USA
[19] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[20] UNC, CONICET, CCT Cordoba, Inst Astron Teor & Expt, Cordoba, Argentina
[21] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[22] Univ Trieste, Dept Phys, Astron Unit, I-34131 Trieste, Italy
[23] INAF, Osservatorio Astron Trieste, I-34131 Trieste, Italy
[24] Univ Valencia, Dept Astron & Astrofis, E-46100 Burjassot, Valencia, Spain
[25] Univ Paris Diderot, Observ Paris, UMR CNRS 8102, CNRS,LUTh, F-92190 Meudon, France
[26] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[27] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[28] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany
[29] Heidelberg Univ, Zentrum Astron, D-69120 Heidelberg, Germany
[30] Univ Paris 06, UMR7095, Inst Astrophys Paris, F-75014 Paris, France
[31] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France
[32] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA
[33] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[34] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
galaxies: evolution; galaxies: haloes; galaxies: luminosity function; mass function; galaxies: statistics; cosmology: theory; dark matter; DARK-MATTER HALOES; N-BODY SIMULATIONS; PRIMORDIAL NON-GAUSSIANITY; ADAPTIVE MESH REFINEMENT; SCALE-DEPENDENT BIAS; MILKY-WAY SATELLITES; DIGITAL SKY SURVEY; GALAXY FORMATION; MASS FUNCTION; SEMIANALYTIC MODEL;
D O I
10.1093/mnras/stt1403
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the 'halo finder comparison project': we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and V-max function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and - to a minor extent - the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
引用
收藏
页码:1618 / 1658
页数:41
相关论文
共 304 条
[1]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[2]  
Alimi J.-M., 2012, PREPRINT
[3]   The shape of dark matter haloes: dependence on mass, redshift, radius and formation [J].
Allgood, B ;
Flores, RA ;
Primack, JR ;
Kravtsov, AV ;
Wechsler, RH ;
Faltenbacher, A ;
Bullock, JS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 367 (04) :1781-1796
[4]   The total mass of dark matter haloes [J].
Anderhalden, Donnino ;
Diemand, Juerg .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 414 (04) :3166-3172
[5]   Scaling relations for galaxy clusters in the Millennium-XXL simulation [J].
Angulo, R. E. ;
Springel, V. ;
White, S. D. M. ;
Jenkins, A. ;
Baugh, C. M. ;
Frenk, C. S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 426 (03) :2046-2062
[6]  
Aragon-Calvo M. A, 2007, APJ, V655, pL5
[7]  
Ascasibar Y, 2005, MON NOT R ASTRON SOC, V356, P872, DOI 10.1111/j.1365-2966.2004.08480-x
[8]   The dynamical structure of dark matter haloes [J].
Ascasibar, Yago ;
Gottloeber, Stefan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (04) :2022-2030
[9]   Estimating multidimensional probability fields using the Field Estimator for Arbitrary Spaces (FiEstAS) with applications to astrophysics [J].
Ascasibar, Yago .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (08) :1436-1441
[10]   The origin and implications of dark matter anisotropic cosmic infall on ≈ L* haloes [J].
Aubert, D ;
Pichon, C ;
Colombi, S .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 352 (02) :376-398